Skip to main content

Advertisement

Log in

Microalgae as Bio-fertilizer: a New Strategy for Advancing Modern Agriculture, Wastewater Bioremediation, and Atmospheric Carbon Mitigation

  • Review Article
  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this review article, recent contributions of potential uses of microalgae (green and cyanobacteria) in the agricultural and livestock sector, such as in the production of biofertilizers, biostimulants, and soil conditioning, are presented and discussed. Recent research was compiled to provide information on the productivity in microalgae biomass, dry biomass, and percentages of proteins from microalgae biomass, in addition to the definition of the best models of photobioreactors available for the cultivation of over thirty microalgae species. Ideal cultivation conditions, including the use of seven types of wastewaters as a substrate, are presented to show readers the best production routes for this specific type of biomass. Information on improvements in environmental services provided by microalgae cultivation are also included, such as bioremediation of wastewater and recovery of resources, in addition to the biofixation of CO2, which serves to mitigate air pollution. The bioremediation potential of mixotrophic, heterotrophic, and photoautotrophic microalgae cultures is demonstrated in the average removals of COD (71.1%), BOD5 (78.2%), NH4+ (93.4%), and P (88.5%) found according to the cited articles. Comparisons between the performance of biomass versus conventional fertilizers are discussed critically and objectively, based on the results of experiments with more than ten crop plants. Furthermore, to fulfill the purpose of this mini review, the research needs for future advancements of modern agriculture using microalgae are highlighted, including assessments on different soil types, plants, and microalgae biomass application methods. Finally, the challenges faced by microalgae biotechnology in expanding its contribution to the bioeconomy are also evaluated, namely, reducing pressure on natural resources, providing innovative agriculture, less dependent on energy inputs, and contributing to the sustainability of the planet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors declare that all data supporting the fndings of this study are available within the article and from the corresponding author upon reasonable request.

References

  • Ácien, F. G., Gómez-Serrano, C., Morales-Amaral, M. M., & Fernández-Sevilla, J. M. (2016). Molina-Grima E (2016) Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Applied Microbiology and Biotechnology, 100, 9013–9022.

    Google Scholar 

  • Alobwede, E., Leake, J. R., & Pandhal, J. (2019). Circular economy fertilization: Testing micro and macro algal species as soil improvers and nutrient sources for crop production in greenhouse and field conditions. Geoderma, 334(2019), 113–123. https://doi.org/10.1016/j.geoderma.2018.07.049

    Article  CAS  Google Scholar 

  • Alvarez, A. L., Weyers, S. L., Goemann, H. M., Peyton, B. M., & Gardner, R. D. (2021). Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Research, 54(102200), 2021.

    Google Scholar 

  • Arashiro, L. T., Josa, I., Ferrer, I., Van Hulle, S. W. H., Rousseau, D. P. L., & Garfí, M. (2022). Life cycle assessment of microalgae systems for wastewater treatment and bioproducts recovery: Natural pigments, biofertilizer and biogas, Science of The Total Environment, Volume 847, 2022. ISSN, 157615, 0048–9697. https://doi.org/10.1016/j.scitotenv.2022.157615

    Article  CAS  Google Scholar 

  • Barone, V., Puglisi, I., Fragalà, F., Piero, A. R. L., Giuffrida, F., & Baglieri, A. (2019). Novel bioprocess for the cultivation of microalgae in hydroponic growing system of tomato plants. Journal of Applied Phycology, 31(465–470), 2019.

    Google Scholar 

  • Barros, A., Pereira, H., Campos, J., Marques, A., & Varela, J. (2019). Silva J (2019) Heterotrophy as a tool to overcome the long and costly autotrophic scale-up process for large scale production of microalgae. Scientific Reports, 9, 1–7.

    CAS  Google Scholar 

  • Batista, A. P., Gouveia, L., Bandarra, N. M., & Franco, J. M. (2013). Raymundo A (2013) Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Research, 2(2), 164–173.

    Google Scholar 

  • Becker, E. W. (2007). Micro-algae as a source of protein, Biotechnology Advances, 25(2), 2007. ISSN, 207–210, 0734–9750. https://doi.org/10.1016/j.biotechadv.2006.11.002

    Article  CAS  Google Scholar 

  • Bello, A. S., Saadaoui, I., & Ben-Hamadou, R. (2021). “Beyond the Source of Bioenergy”: Microalgae in Modern Agriculture as a Biostimulant, Biofertilizer, and Anti-Abiotic Stress. Agronomy, 11(8), 2021.

    Google Scholar 

  • Bhalamurugan, G. L., & Valerie, O. (2018). Mark L (2018) Valuable bioproducts obtained from microalgal biomass and their commercial applications: a review. Environmental Engineering Research, 23(3), 229–241.

    Google Scholar 

  • Bhatnagar, A., Chinnasamy, S., & Singh, M. (2011). Das KC (2011) Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, 88, 3425–3431. https://doi.org/10.1016/j.apenergy.2010.12.064

    Article  CAS  Google Scholar 

  • Bonilla Cedrez, C., Chamberlin, J., & Guo, Z. (2020). Hijmans RJ (2020) Spatial variation in fertilizer prices in Sub-Saharan Africa. PLoS One, 15(1), e0227764. https://doi.org/10.1371/journal.pone.0227764

    Article  CAS  Google Scholar 

  • Bose, A., O’Shea, R., Lin, R., & Murphy, J. D. (2022). Optimisation and performance prediction of photosynthetic biogas upgrading using a bubble column, Chemical Engineering Journal, Volume 437, Part 1, 2022. ISSN, 134988, 1385–8947. https://doi.org/10.1016/j.cej.2022.134988

    Article  CAS  Google Scholar 

  • Brasil (2004). Ministério da Agricultura, Pecuária e Abastecimento (MAPA). Decreto Nº 4.954 de 14 de janeiro de 2004. Diário Oficial da República Federativa do Brasil, Brasília, DF (14 jan. 2004).

  • Brasil (2006). Ministério do Meio Ambiente (MMA). Resolução Nº 375 de 29 de agosto de 2006. Diário Oficial da República Federativa do Brasil, Brasília, DF (30 ago. 2006).

  • Brasil (2020). Ministério da Agricultura, Pecuária e Abastecimento (MAPA)/Secretaria de Defesa Agropecuária. Instrução Normativa Nº 61, de 8 de julho de 2020. Diário Oficial da República Federativa do Brasil, Brasília, DF (15 jul. 2020).

  • Brindley, C., Jiménez-Ruíz, N., & Acién, F. G. (2016). Fernández-Sevilla JM (2016) Light regime optimization in photobioreactors using a dynamic photosynthesis model. Algal Research, 16, 399–408.

    Google Scholar 

  • Bulgari, R., Cocetta, G., Trivellini, A., & Vernieri, P. (2015). Ferrante A (2015) Biostimulants and crop responses: a review. Biological Agriculture & Horticulture, 31(1), 1–17.

    Google Scholar 

  • Casagli, F., Rossi, S., Steyer, J. P., Bernard, O., & Ficara, E. (2021). Balancing microalgae and nitrifiers for wastewater treatment: can inorganic carbon limitation cause an environmental threat? Environmental Science Technology, 55(2021), 3940–3955. https://doi.org/10.1021/acs.est.0c05264

    Article  CAS  Google Scholar 

  • Cho, H. U., & Kim, Y. M. (2017). Park JM (2017) Enhanced microalgal biomass and lipid production from a consortium of indigenous microalgae and bacteria present in municipal wastewater under gradually mixotrophic culture conditions. Bioresource Technology, 228, 290–297.

    CAS  Google Scholar 

  • Colla, G. (2020). Rouphael Y (2020) Microalgae: new Source of Plant Biostimulants. Agronomy, 10(9), 1–4.

    Google Scholar 

  • Coppens, J., Grunert, O., Van Den Hende, S., Vanhoutte, I., Boon, N., & Haesaert, G. (2016). Gelder LD (2016) The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. J Appl Phycol, 28, 2367–2377. https://doi.org/10.1007/s10811-015-0775-2

    Article  CAS  Google Scholar 

  • Cordell, D., & Drangert, J. O. (2009). White S (2009) The story of phosphorus: global food security and food for thought. Global Environmental Change, 19, 292–305.

    Google Scholar 

  • Costa, O. Y. A., Raaijmakers, J. M., & Kuramae, E. E. (2018). Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Frontiers in Microbiology, 9(1636), 2018.

    Google Scholar 

  • Costa, J. A. V., Freitas, B. C. B., Cruz, C. G., Silveira, J., & Morais, M. G. (2019). Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development, Journal of Environmental Science and Health, Part B. Pesticides, Food Contaminants, and Agricultural Wastes, 54(5), 2019. https://doi.org/10.1080/03601234.2019.1571366

    Article  CAS  Google Scholar 

  • De Mendonça, H. V., Martins, C. E., Rocha, W. S. D., Borges, C. A. V., Ometto, J. P. H. B., & Otenio, M. H. (2018). Biofertilizer Replace Urea as a Source of Nitrogen for Sugarcane Production. Water, Air, and Soil Pollution, 229(216), 2018a.

    Google Scholar 

  • De Mendonça, H. V., Ometto, J. P. H. B., Otenio, M. H., & Marques, I. P. R. (2018). Reis AJD (2018b) Microalgae-mediated bioremediation and valorization of cattle wastewater previously digested in a hybrid anaerobic reactor using a photobioreactor: comparison between batch and continuous operation. Science of the Total Environment, 633, 1–11.

    Google Scholar 

  • De Mendonça, H. V., Otenio, M. H., Marchão, L., Lomeu, A., De Souza, D. S., & Reis, A. (2022). Biofuel recovery from microalgae biomass grown in dairy wastewater treated with activated sludge: The next step in sustainable production, Science of The Total Environment, Volume 824, 2022. ISSN, 153838, 0048–9697. https://doi.org/10.1016/j.scitotenv.2022.153838

    Article  CAS  Google Scholar 

  • De Morais, M. G., De Morais, E. G., Duarte, J. H., Deamici, K. M., & Mitchell, B. G. (2019). Costa JAB (2019) Biological CO2 mitigation by microalgae: technological trends, future prospects and challenges. World Journal of Microbiology and Biotechnology, 35, 78.

    Google Scholar 

  • De Souza, D. S., Valadão, R. C., De Souza, E. R. P., & Barbosa, M. I. M. J. (2022). De Mendonça HV (2022) Enhanced Arthrospira platensis Biomass Production Combined with Anaerobic Cattle Wastewater Bioremediation. Bioenergy Research, 15, 412–425. https://doi.org/10.1007/s12155-021-10258-4

    Article  CAS  Google Scholar 

  • Dineshkumar, R., Subramanian, J., Gopalsamy, J., Jayasingam, P., Arumugam, A., & Kannadasan, S. (2019). Sampathkumar P (2019) The Impact of Using Microalgae as Biofertilizer in Maize (Zea mays L). Waste Biomass Valor, 10, 1101–1110. https://doi.org/10.1007/s12649-017-0123-7

    Article  CAS  Google Scholar 

  • Dolganyuk, V., Belova, D., Babich, O., Prosekov, A., Ivanova, S., Katserov, D., Patyukov, N., & Sukhikh, S. (2020). Microalgae: A Promising Source of Valuable Bioproducts. Biomolecules, 2020(10), 1153. https://doi.org/10.3390/biom10081153

    Article  CAS  Google Scholar 

  • Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196(3–14), 2015. https://doi.org/10.1016/j.scienta.2015.09.021

    Article  CAS  Google Scholar 

  • El Arroussi, H., Benhima, R., Elbaouchi, A., Sijilmassi, B., El Mernissi, N., Aafsar, A., Meftah-Kadmiri, I., & Bendaou, N. (2018). Smouni A (2018) Dunaliella salina exopolysaccha- rides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycoper- sicum). Journal of Applied Phycology, 30, 2929–2941.

    Google Scholar 

  • El-Naggar, N. E. A., Hussein, M. H., & Shaaban-Dessuuki, S. A. (2020). Dalal SR (2020) Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Scientific Reports, 10, 1–19.

    Google Scholar 

  • Farid, R., Mutale-Joan, C., Redouane, B., Mernissi Najib, E., Abderahime, A., & Laila, S. (2019). Ar- RoussiHicham E (2019) Effect of microalgae polysaccharides on biochemical and metabolomics pathways related to plant defense in Solanum lycopersicum. Applied Biochemistry and Biotechnology, 188, 225–240.

    CAS  Google Scholar 

  • Fernández, F. G. A., Reis, A., Wijffels, R. H., Barbosa, M., & Verdelho, V. (2021). Llamas B (2021) The role of microalgae in the bioeconomy. New Biotechnology, 61, 99–107.

    Google Scholar 

  • Ferreira, A., Marques, P., Ribeiro, B., Assemany, P., De Mendonça, H. V., Barata, A., Oliveira, A. C., Reis, A., & Pinheiro, H. M. (2018). Gouveia L (2018) Combining biotechnology with circular bioeconomy: from poultry, swine, cattle, brewery, dairy and urban wastewaters to biohydrogen. Environmental Research, 164, 32–38.

    CAS  Google Scholar 

  • Ferreira, A., Melkonyan, L., Carapinha, S., Ribeiro, B., Figueiredo, D., Avetisova, G., & Gouveia, L. (2021). Biostimulant and biopesticide potential of microalgae growing in piggery wastewater. Environmental Advances, 4, 2021.

    Google Scholar 

  • Fields, F. J., Lejzerowicz, F., Schroeder, D., Ngoi, S. M., Tran, M., Mcdonald, D., Jiang, L., Chang, J. T., Knight, R., & Mayfield, S. (2020). Effects of the microalgae Chlamydomonas on gastrointestinal health. Journal of Functional Foods, 65, 2020.

    Google Scholar 

  • Franco, A. L. C., Lôbo, I. P., Da, Cruz RS., Teixeira, C. M. L. L., & Almeida Neto, J. A. D. E. (2013). Menezes RS (2013) Biodiesel de microalgas: avanços e desafios. Química Nova, 36(3), 437–448.

    CAS  Google Scholar 

  • Garcia-Gonzalez, J., & Sommerfeld, M. (2016). Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. Journal of Applied Phycology, 28, 1051–1061. https://doi.org/10.1007/s10811-015-0625-2

    Article  Google Scholar 

  • Gitau, M. M., Farkas, A., Ördög, V., & Maróti, G. (2022). Evaluation of the biostimulant effects of two Chlorophyta microalgae on tomato (Solanum lycopersicum), Journal of Cleaner Production, Volume 364, 2022. ISSN, 132689, 0959–6526. https://doi.org/10.1016/j.jclepro.2022.132689

    Article  Google Scholar 

  • Gonçalves, A. L., & Pires, J. C. M. (2017). Simões M (2017b) A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24(part B), 403–415.

    Google Scholar 

  • Gonçalves, A. L., Pires, J. C. M., & Simões, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24(Part B 2017), 403–415. https://doi.org/10.1016/j.algal.2016.11.008 ISSN 2211-9264.

    Article  Google Scholar 

  • Gong, Y., & Jiang, M. (2011). Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnol Lett, 33, 1269–1284. https://doi.org/10.1007/s10529-011-0574-z

    Article  CAS  Google Scholar 

  • Gonzalez, E. G., Carvalho, J. C., Aulestia, D. T. M., Gonzalez, O. I. M., & Soccol, C. R. (2020). Bioprospection of green microalgae native to Paraná, Brazil using a multi-criteria analysis: Potential for the production of lipids, proteins, and carotenoids. Bioresource Technology Reports, 10, 2020.

    Google Scholar 

  • Goswami, R. K., Agrawal, K., & Verma, P. (2022). An exploration of natural synergy using microalgae for the remediation of pharmaceuticals and xenobiotics in wastewater, Algal Research, Volume 64, 2022. ISSN, 102703, 2211–9264. https://doi.org/10.1016/j.algal.2022.102703

    Article  Google Scholar 

  • Gramegna, G., Scortica, A., Scafati, V., Ferella, F., Gurrieri, L., Giovannoni, M., Bassid, R., Sparlac, F., Mattei, B., & Benedetti, M. (2020). Exploring the potential of microalgae in the recycling of dairy wastes. Bioresource Technology Reports, 12(100604), 2020. https://doi.org/10.1016/j.biteb.2020.100604

    Article  Google Scholar 

  • Hena, S., Znad, H., Heong, Kt., & Judd, S. (2017). Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis. Water Research, 128, 267–277. https://doi.org/10.1016/j.watres.2017.10.057

    Article  CAS  Google Scholar 

  • Hussain, F., Shah, S.Z., Ahmad, H., Abubshait, S.A., Abubshait, H.A., Laref, A., Manikandan, A., Kusuma, H.S., Iqbal, M. (2021). Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review. Renewable and Sustainable Energy Reviews 137, 2021

  • Jiang, L., Luo, S., Fan, X., Yang, Z., & Guo, R. (2011). Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Applied Energy, 88(10), 3336–3341. https://doi.org/10.1016/j.apenergy.2011.03.043 ISSN 0306-2619.

    Article  CAS  Google Scholar 

  • Kapoore, R. V., Wood, E. E., & Llewellyn, C. A. (2021). Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnology Advances, 49(2021), 107754. https://doi.org/10.1016/j.biotechadv.2021.107754 ISSN 0734-9750.

    Article  CAS  Google Scholar 

  • Kershaw, E. H., Hartley, S., & Mcleod, C. (2020). Polson P (2020) The Sustainable Path to a Circular Bioeconomy. Trends in Biotechnology, 39(6), 542–545.

    Google Scholar 

  • Kim, J-Y, Kim H-W (2017). Photoautotrophic Microalgae Screening for Tertiary Treatment of Livestock Wastewater and Bioresource Recovery. Water, 9(3), 192. https://doi.org/10.3390/w9030192.

  • Kim, M. J., Shim, C. K., Kim, Y. K., Ko, B. G., Park, J. H., Hwang, S. G., & Kim, B. H. (2018). Effect of biostimulator Chlorella fusca on improving growth and qualities of Chinese chives and spinach in organic farm. Plant Pathology Journal, 34(2018), 567–574. https://doi.org/10.5423/PPJ.FT.11.2018.0254

    Article  CAS  Google Scholar 

  • Kishi, M., & Toda, T. (2018). Carbon fixation properties of three alkalihalophilic microalgal strains under high alkalinity. Journal Applied Phycology, 30, 401–410. https://doi.org/10.1007/s10811-017-1226-z

    Article  CAS  Google Scholar 

  • Kopittke, P. M., Menzies, N. W., Wang, P., Mckenna, B. A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security, Environment International, Volume 132, 2019. ISSN, 105078, 0160–4120. https://doi.org/10.1016/j.envint.2019.105078

    Article  Google Scholar 

  • Kumar, A. K., Sharma, S., Shah, E., Parikh, B. S., Patel, A., Dixit, G., & Gupta, S. (2019). Divecha JM (2019) Cultivation of Ascochloris sp ADW007-enriched microalga in raw dairy wastewater for enhanced biomass and lipid productivity. International Journal of Environmental Science and Technology, 16, 943–954. https://doi.org/10.1007/s13762-018-1712-0

    CAS  Google Scholar 

  • Li, T., Xu, J., Gao, B., Xiang, W., & Li, A. (2016). Zhang C (2016) Morphology, growth, biochemical composition, and photosynthetic performance of Chlorella vulgaris (Trebouxiophyceae) under low and high nitrogen supplies. Algal Research, 16, 481–491.

    Google Scholar 

  • Liu, C., Subashchandrabose, S., Ming, H., Xiao, B., & Naidu, R. (2016). Megharaj M (2016) Phycoremediation of dairy and winery wastewater using Diplosphaera sp MM1. Journal of Applied Phycology, 28(6), 3331–3341. https://doi.org/10.1007/s10811-016-0894-4

    Article  CAS  Google Scholar 

  • Lorentz, J. F., Calijuri, M. L., Assemany, P. P., Alves, W. S., & Pereira, O. G. (2020). Microalgal biomass as a biofertilizer for pasture cultivation: Plant productivity and chemical composition. Journal of Cleaner Production, 276, 2020. https://doi.org/10.1016/j.jclepro.2020.124130

    Article  CAS  Google Scholar 

  • Magalhães, I. B., Ferreira, J., De Siqueira Castro, J., De Assis, L. R., & Calijuri, M. L. (2021). Technologies for improving microalgae biomass production coupled to effluent treatment: A life cycle approach. Algal Research, 57(102346), 2021. https://doi.org/10.1016/j.algal.2021.102346

    Article  Google Scholar 

  • Markou, G., & Georgakakis, G. (2011). Cultivation of filamentous cyanobacteria (bluegreen algae) in agro-industrial wastes and wastewaters: a review. Applied Energy, 88(10), 3389–3401.

    CAS  Google Scholar 

  • Markou, G., Iconomou, D., & Muylaert, K. (2016). Applying raw poultry litter leachate for the cultivation of Arthrospira platensis and Chlorella vulgaris. Algal Research, 1379–84, 2016.

    Google Scholar 

  • Matos, J., Cardoso, C., Bandarra, N. M., & Afonso, C. (2017). Microalgae as healthy ingredients for functional food: A review. Food & Function, 8(8), 2017.

    Google Scholar 

  • Medeiros, V. P. B., Pimentel, T. C., Varandas, R. C. R., Santos, S. A., Pedrosa, G. T. S., Sassi, C. F. C., Conceição, M. M., & Magnani, M. (2020). Exploiting the use of agro-industrial residues from fruit and vegetables as alternative microalgae culture médium. Food Research International, 137, 2020.

    Google Scholar 

  • Mendes Junior, A. P., & Bueno, O. C. (2015). Participação da energia fóssil na produção dos fertilizantes industriais nitrogenados com ênfase na ureia. Energia Na Agricultura, 30(442–447), 2015.

    Google Scholar 

  • Michalak, I., & Chojnacka, K. (2015). Algae as production systems of bioactive compounds. Engineering in Life Sciences, 15, 160–76.

    CAS  Google Scholar 

  • Morillas-España, A., Lafarga, T., Sánchez-Zurano, A., Acién-Fernández, F. G., & González-López, C. (2022). Microalgae based wastewater treatment coupled to the production of high value agricultural products: Current needs and challenges, Chemosphere, Volume 291, Part 3, 2022. ISSN, 132968, 0045–6535. https://doi.org/10.1016/j.chemosphere.2021.132968

    Article  CAS  Google Scholar 

  • Mulbry, W., Kondrad, S., Pizarro, C., & Kebede-Westhead, E. (2008). Treatment of dairy manure effluent using freshwater algae: Algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers, Bioresource Technology, 99(17), 2008. ISSN, 8137–8142, 0960–8524. https://doi.org/10.1016/j.biortech.2008.03.073

    Article  CAS  Google Scholar 

  • Nagarajan, D., Lee, D.-J., Chen, C.-Y., & Chang, J.-S. (2020). Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Bioresource Technology, 122817, 2020.

    Google Scholar 

  • Nayak, M., Swain, D. K., & Sen, R. (2019). Strategic valorization of de-oiled microalgal biomass waste as biofertilizer for sustainable and improved agriculture of rice (Oryza sativa L.) crop. Science of the Total Environment, 682, 475–484.

    CAS  Google Scholar 

  • Nisha, R., Kiran, B., Kaushik, A., & Kaushik, C. P. (2018). Bioremediation of salt affected soils using cyanobacteria in terms of physical structure, nutrient status and microbial activity. International Journal of Environmental Science and Technology, 15(2018), 571–580. https://doi.org/10.1007/s13762-017-1419-7

    Article  CAS  Google Scholar 

  • Oni, B. A., Oziegde, O., & Olawole, O. O. (2019). Significance of biochar application to the environment and economy. Annals of Agricultural Sciences, 64, 222–236.

    Google Scholar 

  • Oviedo, J. A., Muñoz, R., Donoso-Bravo, A., Bernard, O., Casagli, F., & Jeison, D. (2022). A half-century of research on microalgae-bacteria for wastewater treatment, Algal Research, Volume 67, 2022. ISSN, 102828, 2211–9264. https://doi.org/10.1016/j.algal.2022.102828

    Article  Google Scholar 

  • Panagopoulos, A. (2021). Beneficiation of saline effluents from seawater desalination plants: Fostering the zero liquid discharge (ZLD) approach - A techno-economic evaluation. Journal of Environmental Chemical Engineering, 9(4), 105338. https://doi.org/10.1016/j.jece.2021.105338 ISSN 2213-3437.

    Article  CAS  Google Scholar 

  • Panagopoulos, A. (2022). Brine management (saline water & wastewater effluents): Sustainable utilization and resource recovery strategy through Minimal and Zero Liquid Discharge (MLD & ZLD) desalination systems. Chemical Engineering and Processing - Process Intensification, 176(2022), 108944. https://doi.org/10.1016/j.cep.2022.108944 ISSN 0255-2701.

    Article  CAS  Google Scholar 

  • Patel, A., Matsakas, L., & Rova, U. (2019). Christakopoulos P (2019) A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. Bioresource Technology, 278, 424–34.

    CAS  Google Scholar 

  • Posadas, E., Morales, M., Del, M., Gomez, C., Acién, F. G., & Muñoz, R. (2015). Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chemical Engineering Journal, 265, 239–248.

    CAS  Google Scholar 

  • Prasanna, R., Sood, A., Ratha, S.K., Singh, P.K. (2014). Cyanobacteria as “green” option for sustainable agriculture, in: N.K. Sharma, A.K. Rai, L.J. Stal (Eds.), Cyanobacteria: An Economic Perspective, Wiley, 2014 145–166

  • Priyadarshani, I., Rath, B., & Thajuddin, N. (2014). Influence of aeration and light on biomass production and protein content of four species of marine cyanobacteria. International Journal of Current Microbiology and Applied Sciences, 3(12), 173–182.

    Google Scholar 

  • Puglisi, I., La Bella, E., Rovetto, E. I., Lo Piero, A. R., & Baglieri, A. (2020). Biostimulant effect and biochemical response in lettuce seedlings treated with a Scenedesmus quadricauda extract. Plants, 9(1), 123. https://doi.org/10.3390/plants9010123

    Article  CAS  Google Scholar 

  • Qie, F., Zhu, J., Rong, J., Zong, B. (2019). Biological removal of nitrogen oxides by microalgae, a promising strategy from nitrogen oxides to protein production. Bioresource Technology, 292, 122037. https://doi.org/10.1016/j.biortech.2019.122037

  • Rawat, I., Kumar, R. R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Renew Energy, 88, 3411–3424.

    CAS  Google Scholar 

  • Renuka, N., Prasanna, R., Sood, A., Ahluwalia, A. S., Bansal, R., Babu, S., Singh, R., Shivay, Y. S. & Nain, L. (2016). Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environmental Science and Pollution Research, 23, 6608–6620. https://doi.org/10.1007/s11356-015-5884-6.

  • Renuka, N., Guldhe, A., Prasanna, R., Singh, P., & Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology Advances, 36(4), 1255–1273.

    CAS  Google Scholar 

  • Rocha, D.T., Carvalho, G.R., Resende, J.C. (2020). Cadeia produtiva do leite no Brasil: produção primária. Embrapa, Circ. Técn. 123. ISSN 1678–037X. 16p.

  • Rossi, F., Li, H., Liu, Y., & De Philippis, R. (2017). Cyanobacterial inoculation (cyanobacterisation): Perspectives for the development of a standardized multifunctional technology for soil fertilization and desertification reversal. Earth-Science Reviews, 171(2017), 28–43. https://doi.org/10.1016/j.earscirev.2017.05.006

    Article  Google Scholar 

  • Rupawalla, Z., Shaw, L., Ross, I. L., Schmidt, S., Hankamer, B., & Wolf, J. (2022). Germination screen for microalgae-generated plant growth biostimulants, Algal Research, Volume 66, 2022. ISSN, 102784, 2211–9264. https://doi.org/10.1016/j.algal.2022.102784

    Article  Google Scholar 

  • Russell, C., Rodriguez, C., & Yaseen, M. (2022). High-value biochemical products & applications of freshwater eukaryotic microalgae, Science of The Total Environment, Volume 809, 2022. ISSN, 151111, 0048–9697. https://doi.org/10.1016/j.scitotenv.2021.151111

    Article  CAS  Google Scholar 

  • Santana, H., Cereijo, C. R., Teles, V. C., Nascimento, R. C., Fernandes, M. S., Brunale, P., Campanha, R. C., Soares, I. P., Silva, F. C. P., Sabaini, P. S., Siqueira, F. G., & Brasil, B. S. A. F. (2017). Microalgae cultivation in sugarcane vinasse: selection, growth and biochemical characterization. Bioresource Technology, 228, 133–140.

    CAS  Google Scholar 

  • Santos, M. G. B., Duarte, R. L., Maciel, A. M., Abreu, M., Reis, A., & Mendonça, H. V. (2021). Microalgae Biomass Production for Biofuels in Brazilian Scenario: A Critical Review. BioEnergy Research, 14, 23–42.

    Google Scholar 

  • Sassano, C. E. N., Gioielli, L. A., Ferreira, L. S., Rodrigues, M. S., Sato, S. C. A., & Carvalho, J. C. M. (2010). Evaluation of the composition of continuously-cultivated Arthrospira (Spirulina) platensis using ammonium chloride as nitrogen source. Biomass and Bioenergy, 34(12), 1732–1738.

    CAS  Google Scholar 

  • Schmitz, R., Magro, C., & Colla, L. (2012). Aplicações Ambientais de Microalgas. Revista CIATEC-UPF, 4(1), 48–60. https://doi.org/10.5335/ciatec.v4i1.2393

    Article  Google Scholar 

  • Sepehri, A., Sarrafzadeh, M., & Avateffazeli, M. (2020). Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio, Journal of Cleaner Production, Volume 247, 2020. ISSN, 119164, 0959–6526. https://doi.org/10.1016/j.jclepro.2019.119164

    Article  CAS  Google Scholar 

  • Sforza, E., Calvaruso, C., La Rocca, N., & Bertucco, A. (2018). Luxury uptake of phosphorus in Nannochloropsis salina: Effect of P concentration and light on P uptake in batch and continuous cultures, Biochemical Engineering Journal, Volume 134, 2018. ISSN, 69–79, 1369–1703. https://doi.org/10.1016/j.bej.2018.03.008

    Article  CAS  Google Scholar 

  • Shanthi, G., Premalatha, M., & Anantharaman, N. (2018). Effects of L-amino acids as organic nitrogen source on the growth rate, biochemical composition, and polyphenol content of Spirulina platensis. Algal Res, 35, 471–478.

    Google Scholar 

  • Shanthi, G., Premalatha, M., Anantharaman, N. (2021). Potential utilization of fish waste for the sustainable production of microalgae rich in renewable protein and phycocyanin-Arthrospira platensis/Spirulina.. Journal of Cleaner Production, 294 https://doi.org/10.1016/j.jclepro.2021.126106.

  • Sharma, G. K., Khan, S. A., Shrivastava, M., Bhattacharyya, R., Sharma, A., Gupta, D. K., & Gupta, N. (2021). Circular economy fertilization: Phycoremediated algal biomass as biofertilizers for sustainable crop production. Journal of Environmental Management, 287, 112295.

    CAS  Google Scholar 

  • Silambarasan, S., Logeswari, P., Sivaramakrishnan, R., Incharoensakdi, A., Cornejo, P., Kamaraj, B. & Chi, N. T. L. (2021). Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for Solanum lycopersicum cultivation. Chemosphere, 268, 129323. https://doi.org/10.1016/j.chemosphere.2020.129323.

  • Singh, J. S., Kumar, A., Rai, A. N., & Singh, D. P. (2016). Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Frontiers in Microbiology, 7, 1–19.

    CAS  Google Scholar 

  • Solovchenko, A., Verschoor, A. M., Jablonowski, N. D., & Nedbal, L. (2016). Phosphorus from wastewater to crops: an alternative path involving microalgae. Biotechnology Advance, 34, 550–564. https://doi.org/10.1016/j.biotechadv.2016.01.002

    CAS  Google Scholar 

  • Song, C., Liu, Q., Qi, Y., Chen, G., Song, Y., Kansha, Y., & Kitamura, Y. (2019). Absorption-microalgae hybrid CO2 capture and biotransformation strategy—A review. International Journal of Greenhouse Gas Control, 88(2019), 109–117. https://doi.org/10.1016/j.ijggc.2019.06.002 ISSN 1750-5836.

    Article  CAS  Google Scholar 

  • Sproles, A. E., Fields, F. J., Smalley, T. N., Le, C. H., Badary, A., Mayfield, S. P. (2021). Recent advancements in the genetic engineering of microalgae. Algal Research, 53, 2021, 102158. https://doi.org/10.1016/j.algal.2020.102158.

  • Stirk, W. A., Ördög, V., Van Staden, J. J., & Ager, K. (2002). Cytokinin- and auxin-like activity in Cyanophyta and microalgae. Journal of Applied Phycology, 14, 215–221.

    CAS  Google Scholar 

  • Su, Y. (2021). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment, Science of The Total Environment, Volume 762, 2021. ISSN, 144590, 0048–9697. https://doi.org/10.1016/j.scitotenv.2020.144590

    Article  CAS  Google Scholar 

  • Sun, N., Wang, Y., Li, Y. T., Huang, J. C., & Chen, F. (2008). Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem., 43, 1288–1292. https://doi.org/10.1016/j.procbio.2008.07.014

    Article  CAS  Google Scholar 

  • Verma, R., Suthar, S., Chand, N., & Mutiyar, P. K. (2022). Phycoremediation of milk processing wastewater and lipid-rich biomass production using Chlorella vulgaris under continuous batch system, Science of The Total Environment, 833, 2022. ISSN, 155110, 0048–9697. https://doi.org/10.1016/j.scitotenv.2022.155110

    Article  CAS  Google Scholar 

  • Wang, Y., Li, Y. Q., Lv, K., Cheng, J. J., Chen, X. L., Ge, Y., & Yu, X. Y. (2018). Soil microalgae modulate grain arsenic accumulation by reducing dimethylarsinic acid and enhancing nutrient uptake in rice (Oryza sativa L). Plant Soil, 430, 99–111. https://doi.org/10.1007/s11104-018-3719-1

    Article  CAS  Google Scholar 

  • Wijffels, R. H., & Barbosa, M. J. (2010). An Outlook on Microalgal Biofuels. Science, 329(5993), 796–799. https://doi.org/10.1126/science.1189003

    Article  CAS  Google Scholar 

  • Yu, Ju., & Kim, Hw. (2017). Enhanced microalgal growth and effluent quality in tertiary treatment of livestock wastewater using a sequencing batch reactor. Water Air Soil Pollut, 228, 357. https://doi.org/10.1016/j.ecoleng.2017.07.023

    Article  Google Scholar 

  • Zhai, J., Li, X., Li, W., Rahaman, M. H., Zhao, Y., Wei, B., & Wei, H. (2017). Optimization of biomass production and nutrients removal by Spirulina platensis from municipal wastewater. Ecological Engineering, 108(Part A, 2017), 83–92. https://doi.org/10.1016/j.ecoleng.2017.07.023 ISSN 0925-8574.

    Article  Google Scholar 

  • Zhang, Y., Xiao, Z., Ager, E., Kong, L., & Tan, L. (2021). Nutritional quality and health benefi ts of microgreens, a crop of modern agriculture. Journal of Future Foods, 1(1), 58–66. https://doi.org/10.1016/j.jfutfo.2021.07.001 ISSN 2772-5669.

    Article  Google Scholar 

  • Zhou, W., Li, Y., Gao, Y., Zhao, H. (2017). Nutrients removal and recovery from saline wastewater by Spirulina platensis. Bioresource Technology, 245(Part A), 10-17. https://doi.org/10.1016/j.biortech.2017.08.160.

  • Ziero, H. D. D., Buller, L. S., Mudhoo, A., Ampese, L. C., Mussatto, S. I., & Carneiro, T. F. (2020). An overview of subcritical and supercritical water treatment of different biomasses for protein and amino acids production and recovery. Journal of Environmental Chemical Engineering, 8(5), 104406. https://doi.org/10.1016/j.jece.2020.104406 ISSN 2213-3437.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordination for the Improvement of Higher Education Personnel-Brasil (CAPES)—scholarship funding, and funding agency: FAPERJ processes nº E-26/210.807/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Vieira de Mendonça.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagnaisser, L.S., dos Santos, M.G.B., Rita, A.V.S. et al. Microalgae as Bio-fertilizer: a New Strategy for Advancing Modern Agriculture, Wastewater Bioremediation, and Atmospheric Carbon Mitigation. Water Air Soil Pollut 233, 477 (2022). https://doi.org/10.1007/s11270-022-05917-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05917-x

Keywords

Navigation