Skip to main content
Log in

Uranium Recovery from Sulfate-Based Acidic Soil Washing Effluent Using Ion-Exchange Resins

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study aimed to recover U(VI) from sulfate-based acidic soil-washing effluent using the ion-exchange method. For effective ion exchange of U(VI) under acidic conditions, one chelate resin (Purolite S950) stable under low pH conditions and two anion-exchange resins (Ambersep 400 SO4 and 920U SO4) used in sulfuric acid leaching systems were selected. The ionic form of U(VI) changed according to the initial pH conditions of the soil-washing effluent, which affected the U(VI)-ion removal efficiency by the ion-exchange resins. U(VI) ion exchange was consistent with the Langmuir model and followed pseudo-second-order kinetics. Thermodynamic experiments revealed that the U(VI) ion exchange by the ion-exchange resins is an endothermic and spontaneous process. U(VI) was effectively desorbed from the ion-exchange resins using 0.5 M H2SO4 or Na2CO3 solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  • Ahmed, S., Sharaby, C. M., & El Gammal, E. M. (2013). Uranium extraction from sulfuric acid medium using trioctylamine impregnated activated carbon. Hydrometallurgy, 134, 150–157.

    Article  Google Scholar 

  • Amphlett, J., Sharrad, C., & Ogden, M. D. (2018). Extraction of uranium from non-saline and hypersaline conditions using iminodiacetic acid chelating resin Purolite S930+. Chemical Engineering Journal, 342, 133–141.

    Article  CAS  Google Scholar 

  • Ang, K. L., Li, D., & Nikoloski, A. N. (2018). The effectiveness of ion exchange resins in separating uranium and thorium from rare earth elements in acidic aqueous sulfate media. Part 2. Chelating Resins. Minerals Engineering, 123, 8–15.

    Article  CAS  Google Scholar 

  • Bezzina, J. P., Robshaw, T., Dawson, R., & Ogden, M. D. (2020). Single metal isotherm study of the ion exchange removal of Cu (II), Fe (II), Pb (II) and Zn (II) from synthetic acetic acid leachate. Chemical Engineering Journal, 394, 124862.

    Article  CAS  Google Scholar 

  • Bolisetty, S., Peydayesh, M., & Mezzenga, R. (2019). Sustainable technologies for water purification from heavy metals: Review and analysis. Chemical Society Reviews, 48(2), 463–487.

    Article  CAS  Google Scholar 

  • Botelho Junior, A. B., Dreisinger, D. B., & Espinosa, D. C. (2019). A review of nickel, copper, and cobalt recovery by chelating ion exchange resins from mining processes and mining tailings. Mining, Metallurgy & Exploration, 36(1), 199–213.

    Article  Google Scholar 

  • Cai, Y., Wu, C., Liu, Z., Zhang, L., Chen, L., Wang, J., Wang, X., Yang, S., & Wang, S. (2017). Fabrication of a phosphorylated graphene oxide–chitosan composite for highly effective and selective capture of U (VI). Environmental Science: Nano, 4(9), 1876–1886.

    CAS  Google Scholar 

  • Chang, S., Lee, H.-K., Kang, H.-B., Kim, T.-J., Park, S., & Jeon, H. (2021). Decontamination of uranium-contaminated soil by acid washing with uranium recovery. Water, Air, & Soil Pollution, 232(10), 1–10.

    Article  Google Scholar 

  • Cheira, M. F., Atia, B. M., & Kouraim, M. N. (2017). Uranium (VI) recovery from acidic leach liquor by Ambersep 920U SO4 resin: Kinetic, equilibrium and thermodynamic studies. Journal of Radiation Research and Applied Sciences, 10(4), 307–319.

    Article  CAS  Google Scholar 

  • Chen, F., Lv, M., Ye, Y., Miao, S., Tang, X., Liu, Y., Liang, B., Qin, Z., Chen, Y., & He, Z. (2022). Insights on uranium removal by ion exchange columns: The deactivation mechanisms, and an overlooked biological pathway. Chemical Engineering Journal, 134708.

  • Dermont, G., Bergeron, M., Mercier, G., & Richer-Laflèche, M. (2008). Soil washing for metal removal: A review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152(1), 1–31.

    Article  CAS  Google Scholar 

  • He, Y.-R., Li, S.-C., Li, X.-L., Yang, Y., Tang, A.-M., Du, L., Tan, Z.-Y., Zhang, D., & Chen, H.-B. (2018). Graphene (rGO) hydrogel: A promising material for facile removal of uranium from aqueous solution. Chemical Engineering Journal, 338, 333–340.

    Article  CAS  Google Scholar 

  • Hubbe, M. A., Azizian, S., & Douven, S. (2019). Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review. BioResources, 14(3).

  • Iborra, M., Tejero, J., Fité, C., Ramírez, E., & Cunill, F. (2019). Liquid-phase synthesis of butyl levulinate with simultaneous water removal catalyzed by acid ion exchange resins. Journal of Industrial and Engineering Chemistry, 78, 222–231.

    Article  CAS  Google Scholar 

  • Jamil, S., Loganathan, P., Kandasamy, J., Listowski, A., Khourshed, C., Naidu, R., & Vigneswaran, S. (2019). Removal of dissolved organic matter fractions from reverse osmosis concentrate: Comparing granular activated carbon and ion exchange resin adsorbents. Journal of Environmental Chemical Engineering, 7(3), 103126.

    Article  CAS  Google Scholar 

  • Jiang, X., Wang, H., Wang, Q., Hu, E., & Duan, Y. (2020). Immobilizing amino-functionalized mesoporous silica into sodium alginate for efficiently removing low concentrations of uranium. Journal of Cleaner Production, 247, 119162.

    Article  CAS  Google Scholar 

  • Jun, B.-M., Lee, H.-K., Park, S., & Kim, T.-J. (2021). Purification of uranium-contaminated radioactive water by adsorption: A review on adsorbent materials. Separation and Purification Technology, 278, 119675.

    Article  Google Scholar 

  • Khawassek, Y., Eliwa, A., Haggag, E., Mohamed, S., & Omar, S. (2017). Equilibrium, kinetic and thermodynamics of uranium adsorption by ambersep 400 SO4 resin. Arab Journal of Nuclear Sciences and Applications, 50, 100–112.

    Google Scholar 

  • Kim, I.-G., Kim, S.-S., Kim, G.-N., Han, G.-S., & Choi, J.-W. (2016). Reduction of radioactive waste from remediation of uranium-contaminated soil. Nuclear Engineering and Technology, 48(3), 840–846.

    Article  CAS  Google Scholar 

  • Kumar, P. S., Korving, L., Keesman, K. J., van Loosdrecht, M. C., & Witkamp, G.-J. (2019). Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics. Chemical Engineering Journal, 358, 160–169.

    Article  Google Scholar 

  • Lee, J.-C., Hong, H.-J., Chung, K. W., & Kim, S. (2020). Separation of platinum, palladium and rhodium from aqueous solutions using ion exchange resin: A review. Separation and Purification Technology, 246, 116896.

    Article  CAS  Google Scholar 

  • Liu, L., Li, W., Song, W., & Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 633, 206–219.

    Article  CAS  Google Scholar 

  • Liu, T., Li, Z., Zhang, X., Tan, H., Chen, Z., Wu, J., Chen, J., & Qiu, H. (2021). Metal–organic framework-intercalated graphene oxide membranes for selective separation of uranium. Analytical Chemistry, 93(48), 16175–16183.

    Article  CAS  Google Scholar 

  • Ma, Y., Li, X., Mao, H., Wang, B., & Wang, P. (2018). Remediation of hydrocarbon–heavy metal co-contaminated soil by electrokinetics combined with biostimulation. Chemical Engineering Journal, 353, 410–418.

    Article  CAS  Google Scholar 

  • Ma, A., Abushaikha, A., Allen, S. J., & McKay, G. (2019). Ion exchange homogeneous surface diffusion modelling by binary site resin for the removal of nickel ions from wastewater in fixed beds. Chemical Engineering Journal, 358, 1–10.

    Article  CAS  Google Scholar 

  • Mahinroosta, R., & Senevirathna, L. (2020). A review of the emerging treatment technologies for PFAS contaminated soils. Journal of Environmental Management, 255, 109896.

    Article  CAS  Google Scholar 

  • Masoud, A. M. (2020). Sorption behavior of uranium from sulfate media using purolite A400 as a strong base anion exchange resin. International Journal of Environmental Analytical Chemistry, 1–23.

  • Monroy-Guzmán, F. (2016). Isolation of uranium by anionic exchange resins. Journal of Chemistry, 10, 90–95.

    Google Scholar 

  • Nesterenko, P., Shaw, M., Hill, S., & Jones, P. (1999). Aminophosphonate-functionalized silica: A versatile chromatographic stationary phase for high-performance chelation ion chromatography. Microchemical Journal, 62(1), 58–69.

    Article  CAS  Google Scholar 

  • Pastoor, K. J., Kemp, R. S., Jensen, M. P., & Shafer, J. C. (2021). Progress in uranium chemistry: Driving advances in front-end nuclear fuel cycle forensics. Inorganic Chemistry, 60(12), 8347–8367.

    Article  CAS  Google Scholar 

  • Reynier, N., Coudert, L., Blais, J.-F., Mercier, G., & Besner, S. (2015). Treatment of contaminated soil leachate by precipitation, adsorption and ion exchange. Journal of Environmental Chemical Engineering, 3(2), 977–985.

    Article  CAS  Google Scholar 

  • Semer, R., & Reddy, K. R. (1996). Evaluation of soil washing process to remove mixed contaminants from a sandy loam. Journal of Hazardous Materials, 45(1), 45–57.

    Article  CAS  Google Scholar 

  • Shelar-Lohar, G., & Joshi, S. (2019). Comparative study of uranium and thorium metal ion adsorption by gum ghatti grafted poly (acrylamide) copolymer composites. RSC Advances, 9(70), 41326–41335.

    Article  Google Scholar 

  • Xoubi, N., Darda, S. A., Soliman, A. Y., & Abulfaraj, T. (2020). An investigative study of enrichment reduction impact on the neutron flux in the in-core flux-trap facility of MTR research reactors. Nuclear Engineering and Technology, 52(3), 469–476.

    Article  CAS  Google Scholar 

  • Ye, T., Huang, B., Wang, Y., Zhou, L., & Liu, Z. (2020). Rapid removal of uranium (VI) using functionalized luffa rattan biochar from aqueous solution. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 606, 125480.

    Article  CAS  Google Scholar 

  • Zhou, H., Xie, Y., Wang, X., Yang, H., Wang, Y., & Zhang, Y. (2022). Efficient removal of uranium in aqueous solution by Al-doped hydroxyapatite: Static/dynamic adsorption behaviors and mechanism study. Environmental Technology & Innovation, 25, 102103.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a research grant from the Korea Atomic Energy Research Institute (KAERI) [Grant No. 521220–22, South Korea].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungbin Park.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5175 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HK., Park, W., Chang, S. et al. Uranium Recovery from Sulfate-Based Acidic Soil Washing Effluent Using Ion-Exchange Resins. Water Air Soil Pollut 233, 453 (2022). https://doi.org/10.1007/s11270-022-05913-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05913-1

Keywords

Navigation