Skip to main content
Log in

Fractional Atmospheric Pollutant Dispersion Equation in a Vertically Inhomogeneous Planetary Boundary Layer: an Analytical Solution Using Conformable Derivatives

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study aims to investigate the potential of fractional derivatives in the mathematical modelling of the dispersion of air pollutants. For this purpose, an analytical solution of the fractional two-dimensional advection–diffusion equation by combining generalized integral Laplace transform technique (GILTT) and conformable derivatives methods was proposed. Although the use of the conformable derivatives loses the non-local character contained in the fractional derivatives, fractional parameters remain in the solution. Thus, this procedure allows considering the anomalous behaviour in the diffusion process, resulting in a new methodology here called the \(\alpha\)-GILTT method. The concentrations calculated with the model were compared with ground-level crosswind-integrated concentrations data from the Copenhagen and Prairie Grass experiments. The statistical indices showed the best results for the moderately unstable Copenhagen experiment under conditions of low fractionality (values close to unity). However, for the strongly convective Prairie Grass experiment, the results showed greater dependence on the fractional parameters (integer-order: NMSE = 0.90, COR = 0.81, FAT2 = 0.63; non-integer order: NMSE = 0.56, COR = 0.89, FAT2 = 0.84). The results suggest that fractional parameters are dependent on atmospheric stability and open a new direction to improve the knowledge of the atmospheric pollutant dispersion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abdelhakim, A. A. (2019). The Flaw in the conformable calculus: It is conformable because it is not fractional. Fractional Calculus and Applied Analysis, 22(2), 242–254.

    Article  Google Scholar 

  • Abdelhakim, A. A., & Machado, J. A. T. (2019). A critical analysis of the conformable derivative. Nonlinear Dynamics, 95, 3063–3073.

    Article  Google Scholar 

  • Abdeljawad, T. (2015). On conformable fractional calculus. Journal of Computational and Applied Mathematics, 279, 57–66.

    Article  Google Scholar 

  • Acioli, P. S., Xavier, F. A., & Moreira, D. M. (2019). Mathematical model using fractional derivatives applied to the dispersion of pollutants in the planetary boundary layer. Boundary-Layer Meteorology, 170(2), 285–304.

    Article  Google Scholar 

  • Adomian, G. (1994). Solving frontier problem of physics: The decomposition method (p. 354). Springer Netherlands.

    Book  Google Scholar 

  • Anderson, D. R., & Ulness, D. J. (2015). Properties of the Katugampola fractional derivative with potential application in quantum mechanics. Journal of Mathematical Physics, 56(6), 063502.

    Article  Google Scholar 

  • Anderson, D. R., Camrud, E., & Ulness, D. J. (2019). On the nature of the conformable derivative and its applications to physics. Journal of Fractional Calculus and Applications, 10(2), 92–135.

    Google Scholar 

  • Atangana, A. (2015). Derivative with a new parameter: Theory, methods and applications. Academic Press.

    Google Scholar 

  • Avci, D., Eroğlu, B. B. İ, & Özdemir, N. (2017). The Dirichlet problem of a conformable advection-diffusion equation. Thermal Science, 21(1), 9–18.

    Article  Google Scholar 

  • Babakhani, A., & Daftardar-Gejji, V. (2002). On calculus of local fractional derivatives. Journal of Mathematical Analysis and Applications, 270(1), 66–79.

    Article  Google Scholar 

  • Barad, M. L. (1958). Project prairie grass, a field program in diffusion. Volume 1 (no. Grp-59-vol-1). Air Force Cambridge Res. Labs Hanscom AFB MA. https://doi.org/10.1016/0022-460X(71)90105-2

  • Buske, D., Vilhena, M. T., Moreira, D. M., & Tirabassi, T. (2007a). An analytical solution of the advection-diffusion equation considering non-local turbulence closure. Environmental Fluid Mechanics, 7(1), 43–54.

    Article  Google Scholar 

  • Buske, D., Vilhena, M. T., Moreira, D. M., & Tirabassi, T. (2007b). Simulation of pollutant dispersion for low wind conditions in stable and convective planetary boundary layer. Atmospheric Environment, 41(26), 5496–5501.

    Article  CAS  Google Scholar 

  • Chen, Y., Yan, Y., & Zhang, K. (2010). On the local fractional derivative. Journal of Mathematical Analysis and Applications, 362(1), 17–33.

    Article  Google Scholar 

  • Chung, W. S. (2015). Fractional Newton mechanics with conformable fractional derivative. Journal of Computational and Applied Mathematics, 290, 150–158.

    Article  Google Scholar 

  • Crank, J. (1979). The mathematics of diffusion. Oxford University Press.

    Google Scholar 

  • Çenesiz, Y., Kurt, A., & Nane, E. (2017). Stochastic solutions of conformable fractional Cauchy problems. Statistics & Probability Letters, 124, 126–131.

    Article  Google Scholar 

  • Costa, C. P., Vilhena, M. T., Moreira, D. M., & Tirabassi, T. (2006). Semi-analytical solution of the steady three-dimensional advection-diffusion equation in the planetary boundary layer. Atmospheric Environment, 40(29), 5659–5669.

    Article  CAS  Google Scholar 

  • Degrazia, G. A., Campos Velho, H. F., & Carvalho, J. C. (1997). Nonlocal exchange coefficients for the convective boundary layer derived from spectral properties. Contributions to Atmospheric Physics, 70, 57–64.

    Google Scholar 

  • Degrazia, G. A., Moreira, D. M., & Vilhena, M. T. (2001). Derivation of an eddy diffusivity depending on source distance for a vertically inhomogeneous turbulence in a convective boundary layer. Journal of Applied Meteorology, 40, 1233–1240.

    Article  Google Scholar 

  • Ghorbani, A. (2008). Toward a new analytical method for solving nonlinear fractional differential equations. Computer Methods in Applied Mechanics and Engineering, 197(49–50), 4173–4179.

    Article  Google Scholar 

  • Gómez-Aguilar, J. F., Miranda-Hernández, M., López-López, M. G., Alvarado-Martínez, V. M., & Baleanu, D. (2016). Modelling and simulation of the fractional space-time diffusion equation. Communications in Nonlinear Science and Numerical Simulation, 30(1–3), 115–127.

    Article  Google Scholar 

  • Gryning, S. E., & Lyck, E. (1984). Atmospheric dispersion from elevated sources in an urban area: Comparison between tracer experiments and model calculations. Journal of Applied Meteorology and Climatology, 23(4), 651–660.

    Article  Google Scholar 

  • Hanna, S. R. (1989). Confidence limits for air quality model evaluations, as estimated by bootstrap and jackknife resampling methods. Atmospheric Environment, 23(6), 1385–1398.

    Article  CAS  Google Scholar 

  • Iyiola, O. S., Tasbozan, O., Kurt, A., & Çenesiz, Y. (2017). On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion. Chaos Solitons & Fractals, 94, 1–7.

    Article  Google Scholar 

  • Khalil, R., Al Horani, M., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 65–70.

    Article  Google Scholar 

  • Kumar, P., & Sharan, M. (2010). An analytical model for dispersion of pollutants from a continuous source in the atmospheric boundary layer. Proceedings of the Royal Society a: Mathematical, Physical and Engineering Sciences, 466(2114), 383–406.

    Article  CAS  Google Scholar 

  • Metzler, R., & Klafter, J. (2000). The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Physics Reports, 339(1), 1–77.

    Article  CAS  Google Scholar 

  • Metzler, R., & Klafter, J. (2004). The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. Journal of Physics a: Mathematical and General, 37(31), R161.

    Article  Google Scholar 

  • Moreira, D. M., Rizza, U., Degrazia, G. A., Mangia, C., & Tirabassi, T. (1998). An analytical air pollution model: Development and evaluation. Contributions to Atmospheric Physics, 71(3), 315–320.

    Google Scholar 

  • Moreira, D. M., Vilhena, M. T., Carvalho, J. C., & Degrazia, G. A. (2005a). Analytical solution of the advection-diffusion equation with nonlocal closure of the turbulent diffusion. Environmental Modelling & Software, 20(10), 1347–1351.

    Article  Google Scholar 

  • Moreira, D. M., Vilhena, M. T., Tirabassi, T., Buske, D., & Cotta, R. (2005b). Near-source atmospheric pollutant dispersion using the new GILTT method. Atmospheric Environment, 39(34), 6289–6294.

    Article  CAS  Google Scholar 

  • Moreira, D. M., Rizza, U., Vilhena, M. T., & Goulart, A. (2005c). Semi-analytical model for pollution dispersion in the planetary boundary layer. Atmospheric Environment, 39(14), 2673–2681.

    Article  CAS  Google Scholar 

  • Moreira, D. M., Vilhena, M. T., Buske, D., & Tirabassi, T. (2006). The GILTT solution of the advection-diffusion equation for an inhomogeneous and nonstationary PBL. Atmospheric Environment, 40(17), 3186–3194.

    Article  CAS  Google Scholar 

  • Moreira, D. M., Vilhena, M. T., Buske, D., & Tirabassi, T. (2009). The state-of-art of the GILTT method to simulate pollutant dispersion in the atmosphere. Atmospheric Research, 92(1), 1–17.

    Article  CAS  Google Scholar 

  • Moreira, D. M., & Vilhena, M. T. (2009). Air pollution and turbulence: Modelling and applications. CRC Press.

    Book  Google Scholar 

  • Moreira, D. M., Moraes, A. C., Goulart, A. G., & Albuquerque, T. T. (2014). A contribution to solve the atmospheric diffusion equation with eddy diffusivity depending on source distance. Atmospheric Environment, 83, 254–259.

    Article  CAS  Google Scholar 

  • Moreira, D. M., & Moret, M. (2018). A new direction in the atmospheric pollutant dispersion inside the planetary boundary layer. Journal of Applied Meteorology and Climatology, 57(1), 185–192.

    Article  Google Scholar 

  • Moreira, D. M., & Santos, C. A. G. (2019). New approach to handle gas-particle transformation in air pollution modelling using fractional derivatives. Atmospheric Pollution Research, 10(5), 1577–1587.

    Article  CAS  Google Scholar 

  • Moreira, D. M., Xavier, P. H. F., Palmeira, A. S., & Nascimento, E. G. S. (2019). New approach to solving the atmospheric pollutant dispersion equation using fractional derivatives. International Journal of Heat and Mass Transfer, 144, 118667.

  • Nieuwstadt, F. T. M. (1980). Application of mixed-layer similarity to the observed dispersion from a ground-level source. Journal of Applied Meteorology and Climatology, 19(2), 157–162.

    Article  Google Scholar 

  • Palmeira, A., Xavier, P. H., & Moreira, D. M. (2020). Simulation of atmospheric pollutant dispersion considering a bi-flux process and fractional derivative. Atmos. Polut. Res., 11(1), 57–66.

    Article  CAS  Google Scholar 

  • Panofsky, H. A. & Dutton, J. A (1984). Atmospheric turbulence: Models and methods for engineering applications. Wiley.

  • Perez-Guerrero, J. S., Pimentel, L. C. G., Ulke, A. G., Oliveira-Junior, J. F., & Heilbron Filho, P. F. L. (2012). A unified analytical solution of the steady-state atmospheric diffusion equation. Atmospheric Environment, 55, 201–212.

    Article  CAS  Google Scholar 

  • Pimentel, L. C. G., Pérez Guerrero, J. S., Ulke, A. G., Duda, F. P., & Heilbron Filho, P. F. L. (2014). Assessment of the unified analytical solution of the steady-state atmospheric diffusion equationfor stable conditions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2167), 20140021.

  • Richardson, L. F. (1926). Atmospheric diffusion shown on a distance-neighbour graph. Proceedings of the Royal Society of London Series A Containing Papers of a Mathematical and Physical Character, 110(756), 709–737.

    Google Scholar 

  • Segatto, CF., Vilhena, M. T. (1999). The state-of-the-art the LTSN method, Mathematics and Computation. In Proccedings of the International Conference in Reactor Physics and Environmental Analysis in Nuclear Applications, Madrid, 2, 1618–1631.

  • Tarasov, V. E. (2018). No nonlocality. No fractional derivative. Communications in Nonlinear Science and Numerical Simulation, 62, 157–163.

    Article  Google Scholar 

  • Tirabassi, T., Buske, D., Moreira, D. M., & Vilhena, M. T. (2008). A two-dimensional solution of the advection-diffusion equation with dry deposition to the ground. Journal of Applied Meteorology and Climatology, 47(8), 2096–2104.

    Article  Google Scholar 

  • Venkatram, A., & Wyngaard, J. C. (1988). Lectures on air pollution modelling. American Meteorological Society.

    Book  Google Scholar 

  • Vilhena, M. T., Costa, C. P., Moreira, D. M., & Tirabassi, T. (2008). A semi-analytical solution for the three-dimensional advection-diffusion equation considering non-local turbulence closure. Atmospheric Research, 90(1), 63–69.

    Article  CAS  Google Scholar 

  • West, B. J., Bologna, M., & Grigolini, P. (2003). Physics of fractal operators. Springer.

    Book  Google Scholar 

  • Willis, G. E., & Deardorff, J. W. (1976). A laboratory model of diffusion into the convective planetary boundary layer. Quarterly Journal of the Royal Meteorological Society, 102(432), 427–445.

    Article  Google Scholar 

  • Wortmann, S., Vilhena, M. T., Moreira, D. M., & Buske, D. (2005). A new analytical approach to simulate the pollutant dispersion in the PBL. Atmospheric Environment, 39(12), 2171–2178.

    Article  CAS  Google Scholar 

  • Zhokh, A. A., Trypolskyi, A. I., & Strizhak, P. E. (2017). Asymptotic Green’s functions for time-fractional diffusion equation and their application for anomalous diffusion problem. Physica a: Statistical Mechanics and Its Applications, 475, 77–81.

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful for the support of SENAI CIMATEC and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davidson Martins Moreira.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos Soledade, A.L., Martins Moreira, D. Fractional Atmospheric Pollutant Dispersion Equation in a Vertically Inhomogeneous Planetary Boundary Layer: an Analytical Solution Using Conformable Derivatives. Water Air Soil Pollut 233, 395 (2022). https://doi.org/10.1007/s11270-022-05864-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05864-7

Keywords

Navigation