Skip to main content

Advertisement

Log in

High Photocatalytic Activity of the Heterojunction Photocatalyst CoFe2O4/AgCl for Efficient Photodegradation of Solophenyl Red 3BL Dye in Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

To increase the photocatalytic activity of AgCl for environmental applications, a simple precipitation–deposition technique was established for the synthesis of the CoFe2O4/AgCl complex. For that, the phase of the nanoparticles was identified by X-ray diffraction (XRD), and combined scanning electron microscopy/energy-dispersive X-ray analysis. The point of zero charges (pHpzc) of CoFe2O4/AgCl was equal to 6.92. The gap energies of CoFe2O4(CFO) and AgCl, evaluated from the UV–VIS diffusion reflectance, were found to be 1.46 eV and 3.20 eV, respectively. The photo-electrochemistry was undertaken to determine the conduction type of the spinel; a flat band of 0.06 VSCE with p-type behavior has been determined and an energy diagram of the hetero-system CFO/AgCl/Na2SO4 electrolyte has been illustrated. As an application, the Solophenyl Red 3BL (SR 3BL), a recalcitrant dye, has been successfully oxidized. The effects of operational factors like the mass ratio (CFO/AgCl), pH, catalyst dose, and initial dye SR 3BL concentration (Co) were optimized. The results revealed a high photoactivity (100%) at pH ~ 3, a catalyst dose of 1 g/L, and an initial concentration (Co) of 10 mg/L within 150 min under visible light. The photo-oxidation data were fitted with the first-order kinetic, and half photocatalytic life of 19 min was extracted. In addition, photodegradation has also been experimented under solar light and a quasi-complete degradation was obtained with a faster kinetic. A photodegradation mechanism was proposed and the radical O2•− was found to be the main active species in the photocatalytic process. Moreover, this hetero-system demonstrated effective oxidation under solar light by facilitating photo-electron transport with the deference potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  • Achour, S., Amokrane, S., Chegrouche, S., Nibou, D., & Baaloudj, O. (2021). Artificial neural network modeling of the hexavalent uranium sorption onto chemically activated bentonite. Research on Chemical Intermediateshttps://doi.org/10.1007/s11164-021-04541-4

  • Afshin, S., Mokhtari, S. A., Vosoughi, M., Sadeghi, H., & Rashtbari, Y. (2018). Data of adsorption of Basic Blue 41 dye from aqueous solutions by activated carbon prepared from filamentous algae. Data in Brief, 21, 1008–1013. https://doi.org/10.1016/j.dib.2018.10.023

    Article  Google Scholar 

  • Asadi-Ghalhari, M., Mostafaloo, R., Ghafouri, N., Kishipour, A., Usei, S., & Baaloudj, O. (2021). Removal of Cefixime from aqueous solutions via proxy electrocoagulation: Modeling and optimization by response surface methodology. Reaction Kinetics, Mechanisms and Catalysis. https://doi.org/10.1007/s11144-021-02055-z

  • Baaloudj, O., Assadi, I., Nasrallah, N., El, A., & Khezami, L. (2021a). Simultaneous removal of antibiotics and inactivation of antibiotic-resistant bacteria by photocatalysis : A review. Journal of Water Process Engineering, 42(May), 102089. https://doi.org/10.1016/j.jwpe.2021.102089

    Article  Google Scholar 

  • Baaloudj, O., Kenfoud, H., Badawi, A. K., Assadi, A. A., Jery, A. El, Assadi, A. A., & Amrane, A. (2022a). Bismuth sillenite crystals as recent photocatalysts for water treatment and energy generation : A critical review. Catalysts. https://doi.org/10.3390/catal12050500

  • Baaloudj, O., Nasrallah, N., Bouallouche, R., Kenfoud, H., Khezami, L., & Assadi, A. A. (2022b). High efficient Cefixime removal from water by the sillenite Bi12TiO20: Photocatalytic mechanism and degradation pathway. Journal of Cleaner Production, 330(November 2021), 129934. https://doi.org/10.1016/j.jclepro.2021.129934

    Article  CAS  Google Scholar 

  • Baaloudj, O., Nasrallah, N., Kenfoud, H., Algethami, F., Modwi, A., Guesmi, A., et al. (2021b). Application of Bi12ZnO20 sillenite as an efficient photocatalyst for wastewater treatment: Removal of both organic and inorganic compounds. Materials, 1–17. https://doi.org/10.3390/ma14185409

  • Behnajady, M. A., Modirshahla, N., & Shokri, M. (2004). Photodestruction of Acid Orange 7 (AO7) in aqueous solutions by UV/H 2O2: Influence of operational parameters. Chemosphere, 55(1), 129–134. https://doi.org/10.1016/j.chemosphere.2003.10.054

    Article  CAS  Google Scholar 

  • Benamira, M., Lahmar, H., Messaadia, L., Rekhila, G., Akika, F. Z., Himrane, M., & Trari, M. (2020). Hydrogen production on the new hetero-system Pr2NiO4/SnO2 under visible light irradiation. International Journal of Hydrogen Energy, 45(3), 1719–1728. https://doi.org/10.1016/j.ijhydene.2019.11.064

    Article  CAS  Google Scholar 

  • Benrighi, Y., Nasrallah, N., Chaabane, T., Sivasankar, V., Darchen, A., & Baaloudj, O. (2021). Photocatalytic performances of ZnCr2O4 nanoparticles for cephalosporins removal: Structural, optical and electrochemical properties. Optical Materials, 115, 111035. https://doi.org/10.1016/j.optmat.2021.111035

    Article  CAS  Google Scholar 

  • Bourkeb, K., & Baaloudj, O. (2021). Facile electrodeposition of ZnO on graphitic substrate for photocatalytic application: Degradation of antibiotic in a continuous stirred‑tank reactor. Journal of Solid State Electrochemistry. https://doi.org/10.1007/s10008-021-05045-2

  • Boutra, B., & Trari, M. (2017). Solar photodegradation of a textile azo dye using synthesized ZnO/Bentonite. Water Science and Technology, 75(5), 1211–1220. https://doi.org/10.2166/wst.2016.597

    Article  CAS  Google Scholar 

  • Boutra, B., Trari, M., Nassrallah, N., & Bellal, B. (2016). Adsorption and photodegradation of Solophenyl Red 3BL on nanosized ZnFe2O4 under solar light. Theoretical and Experimental Chemistry, 52(5), 303–309. https://doi.org/10.1007/s11237-016-9482-6

    Article  CAS  Google Scholar 

  • Boutra, B., Güy, N., Özacar, M., & Trari, M. (2020). Magnetically separable MnFe2O4/TA/ZnO nanocomposites for photocatalytic degradation of Congo Red under visible light. Journal of Magnetism and Magnetic Materials, 497, 165994. https://doi.org/10.1016/j.jmmm.2019.165994

    Article  CAS  Google Scholar 

  • Brahimi, B., Kenfoud, H., Benrighi, Y., & Baaloudj, O. (2021a). Structural and optical properties of Bi12NiO19 sillenite crystals: Application for the removal of Basic Blue 41 from wastewater. Photochem, 1(3), 319–329. https://doi.org/10.3390/photochem1030020

    Article  Google Scholar 

  • Brahimi, B., Mekatel, E., Kadmi, Y., Mellal, M., Baaloudj, O., Belmedani, M., & Trari, M. (2022a). Removal of basic blue 41 dye from water by the hetero-system NiCo2O4/ZnO using a stirred reactor: Kinetics, mechanism and energy diagram. Optik, 258(March), 168933. https://doi.org/10.1016/j.ijleo.2022.168933

    Article  CAS  Google Scholar 

  • Brahimi, B., Mekatel, E., Kenfoud, H., Berrabah, S. E., & Trari, M. (2022b). Efficient removal of the antibiotic Cefixime on Mg0.3Zn0.7O under solar light: Kinetic and mechanism studies. Environmental Science and Pollution Research, 2(0123456789). https://doi.org/10.1007/s11356-022-20626-y

  • Brahimi, B., Mekatel, E., Mellal, M., & Trari, M. (2021b). Synthesis of the hexaferrite semiconductor SrFe12O19 and its application in the photodegradation of Basic Red 46. Journal of Materials Science: Materials in Electronics. https://doi.org/10.1007/s10854-021-06314-6

    Article  Google Scholar 

  • Chankhanittha, T., & Nanan, S. (2021). Visible-light-driven photocatalytic degradation of ofloxacin (OFL) antibiotic and Rhodamine B (RhB) dye by solvothermally grown ZnO/Bi2MoO6 heterojunction. Journal of Colloid and Interface Science, 582, 412–427. https://doi.org/10.1016/j.jcis.2020.08.061

    Article  CAS  Google Scholar 

  • Damardji, B., Khalaf, H., Duclaux, L., & David, B. (2009a). Preparation of TiO2-pillared montmorillonite as photocatalyst Part I. Microwave calcination, characterisation, and adsorption of a textile azo dye. Applied Clay Science, 44(3–4), 201–205. https://doi.org/10.1016/j.clay.2008.12.010

    Article  CAS  Google Scholar 

  • Damardji, B., Khalaf, H., Duclaux, L., & David, B. (2009b). Preparation of TiO2-pillared montmorillonite as photocatalyst Part II. Photocatalytic degradation of a textile azo dye. Applied Clay Science, 45(1–2), 98–104. https://doi.org/10.1016/j.clay.2009b.04.002

    Article  CAS  Google Scholar 

  • Dianat, S., Tangestaninejad, S., Mirkhani, V., Moghadam, M., & Mohammadpoor-Baltork, I. (2013). Preparation, characterization and photocatalytic properties of InVO 4 nanopowder and InVO4-TiO2 nanocomposite toward degradation of azo dyes and formaldehyde under visible light and ultrasonic irradiation. Journal of the Iranian Chemical Society, 10(3), 535–544. https://doi.org/10.1007/s13738-012-0191-3

    Article  CAS  Google Scholar 

  • Elhadj, M., Samira, A., Mohamed, T., Djawad, F., Asma, A., & Djamel, N. (2019). Removal of Basic Red 46 dye from aqueous solution by adsorption and photocatalysis. Separation Science and Technology, 168(1), 1–19. https://doi.org/10.1080/01496395.2019.1577896

    Article  CAS  Google Scholar 

  • Gao, X., Shang, Y., Liu, L., & Fu, F. (2019). Chemisorption-enhanced photocatalytic nitrogen fixation via 2D ultrathin p–n heterojunction AgCl/Δ-Bi2O3 nanosheets. Journal of Catalysis, 371, 71–80. https://doi.org/10.1016/j.jcat.2019.01.002

    Article  CAS  Google Scholar 

  • Goscianska, J., Fathy, N. A., & Aboelenin, R. M. M. (2017). Adsorption of solophenyl red 3BL polyazo dye onto amine-functionalized mesoporous carbons. Journal of Colloid and Interface Science, 505, 593–604. https://doi.org/10.1016/j.jcis.2017.06.052

    Article  CAS  Google Scholar 

  • Guo, J., Shen, C. H., Sun, J., Xu, X. J., Li, X. Y., Fei, Z. H., et al. (2021). Highly efficient activation of peroxymonosulfate by Co3O4/Bi2MoO6 p-n heterostructure composites for the degradation of norfloxacin under visible light irradiation. Separation and Purification Technology, 259(November 2020), 118109. https://doi.org/10.1016/j.seppur.2020.118109

    Article  CAS  Google Scholar 

  • Gupta, V. K., Eren, T., Atar, N., Yola, M. L., Parlak, C., & Karimi-Maleh, H. (2015). CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. Journal of Molecular Liquids, 208, 122–129. https://doi.org/10.1016/j.molliq.2015.04.032

    Article  CAS  Google Scholar 

  • Habibi, M. H., Esfahani, M. N., & Egerton, T. A. (2007). Photochemical characterization and photocatalytic properties of a nanostructure composite TiO2 Film. International Journal of Photoenergy, 2007. https://doi.org/10.1155/2007/13653

  • Habibi, M. H., Hassanzadeh, A., & Zeini-Isfahani, A. (2006). Effect of dye aggregation and azo-hydrazone tautomerism on the photocatalytic degradation of Solophenyl red 3BL azo dye using aqueous TiO2 suspension. Dyes and Pigments, 69(3), 111–117. https://doi.org/10.1016/j.dyepig.2005.02.016

    Article  CAS  Google Scholar 

  • Huang, S., Xu, Y., Xie, M., Xu, H., He, M., Xia, J., et al. (2015). Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visible-light. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 478, 71–80. https://doi.org/10.1016/j.colsurfa.2015.03.035

    Article  CAS  Google Scholar 

  • Jing, H. X., Huang, J., Li, N., Li, L. X., & Zhang, J. (2019). Fabrication of magnetically recyclable ZrO 2 -TiO 2 /CoFe 2 O 4 hollow core/shell photocatalysts: Improving photocatalytic efficiency under sunlight irradiation. Korean Journal of Chemical Engineering, 36(4), 605–612. https://doi.org/10.1007/s11814-019-0241-y

    Article  CAS  Google Scholar 

  • Jing, L., Xu, Y., Huang, S., Xie, M., He, M., Xu, H., et al. (2016). Novel magnetic CoFe2O4/Ag/Ag3VO4 composites: Highly efficient visible light photocatalytic and antibacterial activity. Applied Catalysis b: Environmental, 199, 11–22. https://doi.org/10.1016/j.apcatb.2016.05.049

    Article  CAS  Google Scholar 

  • Kenfoud, H., Nasrallah, N., Baaloudj, O., Meziani, D., Chaabane, T., & Trari, M. (2020). Photocatalytic reduction of Cr(VI) onto the spinel CaFe2O4 nanoparticles. Optik, 223(September), 165610. https://doi.org/10.1016/j.ijleo.2020.165610

    Article  CAS  Google Scholar 

  • Kenfoud, H., Nasrallah, N., Baaloudj, O., Derridj, F., & Trari, M. (2022a). Enhanced photocatalytic reduction of Cr(VI) by the novel hetero-system BaFe2O4/SnO2. Journal of Physics and Chemistry of Solids, 160(August 2021), 110315. https://doi.org/10.1016/j.jpcs.2021.110315

    Article  CAS  Google Scholar 

  • Kenfoud, H, Nasrallah, N., Meziani, D., & Trari, M. (2021a). Photoelectrochemical study of the spinel CaFe2O4 nanostructure : Application to Basic Blue 41 oxidation under solar light. Journal of Solid State Electrochemistry, 19. https://doi.org/10.1007/s10008-021-04952-8

  • Kenfoud, Hamza, Baaloudj, O., Nasrallah, N., Bagtache, R., Assadi, A. A., & Trari, M. (2021b). Structural and electrochemical characterizations of Bi12CoO20 sillenite crystals : Degradation and reduction of organic and inorganic pollutants. Journal of Materials Science: Materials in Electronics. https://doi.org/10.1007/s10854-021-06194-w

  • Kenfoud, H., Nasrallah, N., Baaloudj, O., Belabed, C., Chaabane, T., & Trari, M. (2022b). Opto-electrochemical characteristics of synthesized BaFe2O4 nanocomposites: Photocatalytic degradation and hydrogen generation investigation. International Journal of Hydrogen Energy, 47(24), 12039–12051. https://doi.org/10.1016/j.ijhydene.2022.01.232

    Article  CAS  Google Scholar 

  • Lahmar, H., Benamira, M., Akika, F. Z., & Trari, M. (2017). Reduction of chromium (VI) on the hetero-system CuBi2O4/TiO2 under solar light. Journal of Physics and Chemistry of Solids, 110(Vi), 254–259. https://doi.org/10.1016/j.jpcs.2017.06.021

    Article  CAS  Google Scholar 

  • Lahmar, H., Benamira, M., Douafer, S., Messaadia, L., Boudjerda, A., & Trari, M. (2020). Photocatalytic degradation of methyl orange on the novel hetero-system La2NiO4/ZnO under solar light. Chemical Physics Letters, 742https://doi.org/10.1016/j.cplett.2020.137132

  • Lahmar, H., Kebir, M., Nasrallah, N., & Trari, M. (2012). Photocatalytic reduction of Cr(VI) on the new hetero-system CuCr2O 4/ZnO. Journal of Molecular Catalysis a: Chemical, 353–354, 74–79. https://doi.org/10.1016/j.molcata.2011.10.026

    Article  CAS  Google Scholar 

  • Li, Z., Ai, J., & Ge, M. (2017a). A facile approach assembled magnetic CoFe2O4/AgBr composite for dye degradation under visible light. Journal of Environmental Chemical Engineering, 5(2), 1394–1403. https://doi.org/10.1016/j.jece.2017.02.024

    Article  CAS  Google Scholar 

  • Li, Z., Jia, Z., Li, W., Liu, J., Jiang, S., Li, S., & Zhu, R. (2017b). Synthesis of Ag/AgCl nanoparticles immobilized on CoFe2O4 Fibers and their photocatalytic degradation for methyl orange. Xiyou Jinshu Cailiao Yu Gongcheng/rare Metal Materials and Engineering, 46(12), 3669–3674. https://doi.org/10.1016/s1875-5372(18)30055-9

    Article  CAS  Google Scholar 

  • Loghambal, S., Catherine, A. J. A., & Subash, S. V. (2018). Mathematics and its applications analysis of Langmuir-Hinshelwood kinetics model for photocatalytic degradation of aqueous Direct Blue 71 through analytical expression. International Journal of Mathematics and Its Applications, 6, 903–913.

    Google Scholar 

  • Lou, S., Wang, W., Wang, L., & Zhou, S. (2019). In-situ oxidation synthesis of Cu2O/Ag/AgCl microcubes with enhanced visible-light photocatalytic activity. Journal of Alloys and Compounds, 781, 508–514. https://doi.org/10.1016/j.jallcom.2018.12.115

    Article  CAS  Google Scholar 

  • Mahmoud, M. E., Nabil, G. M., El-Mallah, N. M., Bassiouny, H. I., Kumar, S., & Abdel-Fattah, T. M. (2016). Kinetics, isotherm, and thermodynamic studies of the adsorption of reactive red 195 A dye from water by modified Switchgrass Biochar adsorbent. Journal of Industrial and Engineering Chemistry, 37, 156–167. https://doi.org/10.1016/j.jiec.2016.03.020

    Article  CAS  Google Scholar 

  • Mekatel, H., Amokrane, S., Bellal, B., Trari, M., & Nibou, D. (2012). Photocatalytic reduction of Cr(VI) on nanosized Fe2O3 supported on natural Algerian clay: Characteristics, kinetic and thermodynamic study. Chemical Engineering Journal, 200–202, 611–618. https://doi.org/10.1016/j.cej.2012.06.121

    Article  CAS  Google Scholar 

  • Mohd Adnan, M. A., Muhd Julkapli, N., Amir, M. N. I., & Maamor, A. (2019). Effect on different TiO 2 photocatalyst supports on photodecolorization of synthetic dyes: A review. International Journal of Environmental Science and Technology, 16(1), 547–566. https://doi.org/10.1007/s13762-018-1857-x

    Article  CAS  Google Scholar 

  • Neifar, M., Jaouani, A., Kamoun, A., Ellouze-Ghorbel, R., & Ellouze-Chaabouni, S. (2011). Decolorization of solophenyl Red 3BL polyazo dye by laccase-mediator system: Optimization through response surface methodology. Enzyme Research, 2011(1). https://doi.org/10.4061/2011/179050

  • Palanisamy, G., Bhuvaneswari, K., Chinnadurai, A., Bharathi, G., & Pazhanivel, T. (2020). Magnetically recoverable multifunctional ZnS/Ag/CoFe2O4 nanocomposite for sunlight driven photocatalytic dye degradation and bactericidal application. Journal of Physics and Chemistry of Solids, 138, 109231. https://doi.org/10.1016/j.jpcs.2019.109231

    Article  CAS  Google Scholar 

  • Paredes-Quevedo, L. C., González-Caicedo, C., Torres-Luna, J. A., & Carriazo, J. G. (2021). Removal of a textile azo-dye (basic red 46) in water by efficient adsorption on a natural clay. Water, Air, and Soil Pollution, 232(1). https://doi.org/10.1007/s11270-020-04968-2

  • Sebti, A., Boutra, B., Trari, M., & Igoud, S. (2022). Solar photodegradation of Solophenyl Red 3BL and Neuro-Fuzzy modeling: Kinetic, mechanism and mineralization studies. Reaction Kinetics, Mechanisms and Catalysis, (0123456789). https://doi.org/10.1007/s11144-022-02215-9

  • Sharifianjazi, F., Moradi, M., Parvin, N., Nemati, A., Jafari Rad, A., Sheysi, N., et al. (2020). Magnetic CoFe2O4 nanoparticles doped with metal ions: A review. Ceramics International, 46(11), 18391–18412. https://doi.org/10.1016/j.ceramint.2020.04.202

    Article  CAS  Google Scholar 

  • Wang, X., Lu, Y., Zhu, T., Chang, S., & Wang, W. (2020). CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chemical Engineering Journal, 388(January), 124317. https://doi.org/10.1016/j.cej.2020.124317

    Article  CAS  Google Scholar 

  • Zhang, M., Zhao, F., Yang, Y., An, T., Qu, W., Li, H., et al. (2020). Catalytic activity of ferrates (NiFe2O4, ZnFe2O4 and CoFe2O4) on the thermal decomposition of ammonium perchlorate. Propellants, Explosives, Pyrotechnics, 45(3), 463–471. https://doi.org/10.1002/prep.201900211

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by both the Faculties of Mechanical Engineering and Process Engineering.

Author information

Authors and Affiliations

Authors

Contributions

Billal BRAHIMI: writing—original draft preparation; Elhadj MEKATEL: writing—review and editing; Oussama BAALOUDJ: visualization; Mohamed TRARI: supervision.

Corresponding authors

Correspondence to Billal Brahimi or Mohamed Trari.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1259 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brahimi, B., Mekatel, E., Baaloudj, O. et al. High Photocatalytic Activity of the Heterojunction Photocatalyst CoFe2O4/AgCl for Efficient Photodegradation of Solophenyl Red 3BL Dye in Water. Water Air Soil Pollut 233, 347 (2022). https://doi.org/10.1007/s11270-022-05812-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05812-5

Keywords

Navigation