Skip to main content

Advertisement

Log in

Nitrogen and Sulfur Deposition Reductions Projected to Partially Restore Forest Soil Conditions in the US Northeast, While Understory Composition Continues to Shift with Future Climate Change

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Human activities have dramatically increased nitrogen (N) and sulfur (S) deposition, altering forest ecosystem function and structure. Anticipating how changes in deposition and climate impact forests can inform decisions regarding these environmental stressors. Here, we used a dynamic soil-vegetation model (ForSAFE-Veg) to simulate responses to future scenarios of atmospheric deposition and climate change across 23 Northeastern hardwood stands. Specifically, we simulated soil percent base saturation, acid neutralizing capacity (ANC), nitrate (NO3) leaching, and understory composition under 13 interacting deposition and climate change scenarios to the year 2100, including anticipated deposition reductions under the Clean Air Act (CAA) and Intergovernmental Panel on Climate Change–projected climate futures. Overall, deposition affected soil responses more than climate did. Soils recovered to historic conditions only when future deposition returned to pre-industrial levels, although anticipated CAA deposition reductions led to a partial recovery of percent base saturation (60 to 72%) and ANC (65 to 71%) compared to historic values. CAA reductions also limited NO3 leaching to 30 to 66% above historic levels, while current levels of deposition resulted in NO3 leaching 150 to 207% above historic values. In contrast to soils, understory vegetation was affected strongly by both deposition and climate. Vegetation shifted away from historic and current assemblages with increasing deposition and climate change. Anticipated CAA reductions could maintain current assemblages under current climate conditions or slow community shifts under increased future changes in temperature and precipitation. Overall, our results can inform decision-makers on how these dual stressors interact to affect forest health, and the efficacy of deposition reductions under a changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and analyzed during the current study are available in the Environmental Dataset Gateway (EDG) repository: https://edg.epa.gov/metadata/catalog/main/home.page.

References

  • Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., McNulty, S., Currie, W., Rustad, L., & Fernandez, I. (1998). Nitrogen saturation in temperate forest ecosystems: Hypotheses revisited. BioScience, 48, 921–934.

    Article  Google Scholar 

  • Aber, J. D., Goodale, C. L., Ollinger, S. V., Smith, M. L., Magill, A. H., Martin, M. E., Hallett, R. A., & Stoddard, J. L. (2003). Is nitrogen deposition altering the nitrogen status of northeastern forests? BioScience, 53, 375–389.

    Article  Google Scholar 

  • Achat, D. L., Bakker, M. R., & Trichet, P. (2008). Rooting patterns and fine root biomass of Pinus pinaster assessed by trench wall and core methods. Journal of Forest Research, 13, 165–175.

    Article  Google Scholar 

  • Bailey, S. W., Horsley, S. B., & Long, R. P. (2005). Thirty years of change in forest soils of the Allegheny Plateau, Pennsylvania. Soil Science Society of America Journal, 69, 681–690.

    Article  CAS  Google Scholar 

  • Belyazid, S., Kurz, D., Braun, S., Sverdrup, H., Rihm, B., & Hettelingh, J. P. (2011a). A dynamic modelling approach for estimating critical loads of nitrogen based on plant community changes under a changing climate. Environmental Pollution, 159, 789–801.

    Article  CAS  Google Scholar 

  • Belyazid, S., Phelan, J., Nihlgard, B., Sverdrup, H., Driscoll, C., Fernandez, I., Aherne, J., Teeling-Adams,  L. M., Bailey,  S., Arsenault, M., Cleavitt, N., Engstrom, B., Dennis, R., Sperduto, D., Werier,  D., & Clark, C. (2019). Assessing the effects of climate change and air pollution on soil properties and plant diversity in Northeastern US hardwood forests: Model setup and evaluation. Water Air and Soil Pollution, 230, 106. https://doi.org/10.1007/s11270-019-4145-6

  • Belyazid, S., Sverdrup, H., Kurz, D., & Braun, S. (2011b). Exploring ground vegetation change for different deposition scenarios and methods for estimating critical loads for biodiversity using the ForSAFE-VEG Model in Switzerland and Sweden. Water Air and Soil Pollution, 216, 289–317.

    Article  CAS  Google Scholar 

  • Belyazid, S., Westling, O., & Sverdrup, H. (2006). Modelling changes in forest soil chemistry at 16 Swedish coniferous forest sites following deposition reduction. Environmental Pollution, 144, 596–609.

    Article  CAS  Google Scholar 

  • Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J. W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., & De Vries, W. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20, 30–59.

    Article  CAS  Google Scholar 

  • Boesch, D. F. (1977) Application of numerical classification in ecological investigations of water pollution. Virginia Institute of Marine Sciences, William & Mary.

  • Clark, C. M., Cleland, E. E., Collins, S. L., Fargione, J. E., Gough, L., Gross, K. L., Pennings, S. C., Suding, K. N., & Grace, J. B. (2007). Environmental and plant community determinants of species loss following nitrogen enrichment. Ecology Letters, 10, 596–607.

    Article  Google Scholar 

  • Clark, C. M., Phelan, J., Doraiswamy, P., Buckley, J., Cajka, J. C., Dennis, R. L., Lynch, J., Nolte, C. G., & Spero, T. L. (2018). Atmospheric deposition and exceedances of critical loads from 1800–2025 for the conterminous United States. Ecological Applications, 28, 978–1002.

    Article  Google Scholar 

  • Clark, C. M., Richkus, J., Jones, P. W., Phelan, J., Burns, D. A., de Vries, W., Du, E., Fenn, M. E., Jones, L., & Watmough, S. A. (2019). A synthesis of ecosystem management strategies for forests in the face of chronic nitrogen deposition. Environmental Pollution, 248, 1046–1058.

    Article  CAS  Google Scholar 

  • Clark, C. M., Simkin, S. M., Allen, E. B., Bowman, W. D., Belnap, J., Brooks, M. L., Collins, S. L., Geiser, L. H., Gilliam, F. S., Jovan, S. E., Pardo, L. H., Schulz, B. K., Stevens, C. J., Suding, K. N., Throop, H. L., & Waller, D. M. (2019). Potential vulnerability of 348 herbaceous species to atmospheric deposition of nitrogen and sulfur in the United States. Nature Plants, 5, 697–705.

    Article  CAS  Google Scholar 

  • Clark, C. M., & Tilman, D. (2010). Recovery of plant diversity following N cessation: Effects of recruitment, litter, and elevated N cycling. Ecology, 91, 3620–3630.

    Article  Google Scholar 

  • Cronan, C. S., & Grigal, D. F. (1995). Use of calcium aluminum ratios as indicators of stress in forest ecosystems. Journal of Environmental Quality, 24, 209–226.

    Article  CAS  Google Scholar 

  • Driscoll, C., Whitall, D., Aber, J., Boyer, E., Castro, M., Cronan, C., Goodale, C., Groffman, P., Hopkinson, C., Lambert, K., Lawrence, G., & Ollinger, S. (2003). Nitrogen pollution: Sources and consequences in the US northeast. Environment, 45, 8-+.

  • Easterling, D. R., Kunkel, K. E., Arnold,  J. R., Knutson, T., LeGrande, A. N., Leung, L. R., Vose, R. S., Waliser, D. E., & Wehner, M. F. (2017). Precipitation change in the United States. In D. J. Wuebbles, D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, and T. K. Maycock (Eds). Climate Science Special Report: Fourth National Climate Assessment (pp. 207–230 ), Volume I. U.S. Global Change Research Program.

  • Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., Ngai, J. T., Seabloom, E. W., Shurin, J. B., & Smith, J. E. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135–1142.

    Article  Google Scholar 

  • Emmett, B. A. (2007). Nitrogen saturation of terrestrial ecosystems: Some recent findings and their implications for our conceptual framework. Water, Air, & Soil Pollution: Focus, 7, 99–109.

    Article  CAS  Google Scholar 

  • EPA. (2013a). Air quality modeling technical support document: Proposed Tier 3 emission standards. Air Quality Assessment Division, Office of Air Quality Planning & Standards, US Environmental Protection Agency.

  • EPA. 2013b. Draft regulatory impact analysis: Tier 3 motor vehicle emission & fuel standards. Air Quality Assessment Division, Office of Air Quality Planning & Standards, US Environmental Protection Agency, Washington, DC.

  • EPA. (2020). Integrated Science Assessment (ISA) for oxides of nitrogen, oxides of sulfur and particulate matter-ecological criteria. US Environmental Protection Agency.

    Google Scholar 

  • EPA. (2022). Progress report: Acid deposition. US Environmental Protection Agency, https://www3.epa.gov/airmarkets/progress/reports/acid_deposition_figures.html#figure3. Accessed 22 June 2022.

  • Eshleman, K. N., & Sabo, R. D. (2016). Declining nitrate-N yields in the Upper Potomac River Basin: What is really driving progress under the Chesapeake Bay restoration? Atmospheric Environment, 146, 280–289.

    Article  CAS  Google Scholar 

  • Farrer, E. C., & Suding, K. N. (2016). Teasing apart plant community responses to N enrichment: The roles of resource limitation, competition and soil microbes. Ecology Letters, 19, 1287–1296.

    Article  Google Scholar 

  • Fuss, C. B., Driscoll, C. T., & Campbell, J. L. (2015). Recovery from chronic and snowmelt acidification: Long-term trends in stream and soil water chemistry at the Hubbard Brook Experimental Forest, New Hampshire, USA. Journal of Geophysical Research-Biogeosciences, 120, 2360–2374.

    Article  CAS  Google Scholar 

  • Futter, M. N., Valinia, S., Lofgren, S., Kohler, S. J., & Folster, J. (2014). Long-term trends in water chemistry of acid-sensitive Swedish lakes show slow recovery from historic acidification. Ambio, 43, 77–90.

    Article  CAS  Google Scholar 

  • Gbondo-Tugbawa, S. S., & Driscoll, C. T. (2003). Factors controlling long-term changes in soil pools of exchangeable basic cations and stream acid neutralizing capacity in a northern hardwood forest ecosystem. Biogeochemistry, 63, 161–185.

    Article  CAS  Google Scholar 

  • Gilliam, F. S., Burns, D. A., Driscoll, C. T., Frey, S. D., Lovett, G. M., & Watmough, S. A. (2019). Decreased atmospheric nitrogen deposition in eastern North America: Predicted responses of forest ecosystems. Environmental Pollution, 244, 560–574.

    Article  CAS  Google Scholar 

  • Greaver, T. L., Clark, C. M., Compton, J. E., Vallano, D., Talhelm, A. F., Weaver, C. P., Band, L. E., Baron, J. S., Davidson, E. A., Tague, C. L., Felker-Quinn, E., Lynch, J. A., Herrick, J. D., Liu, L., Goodale, C. L., Novak, K. J., & Haeuber, R. A. (2016). Key ecological responses to nitrogen are altered by climate change. Nature Climate Change, 6, 836–843.

    Article  CAS  Google Scholar 

  • Grigal, D. F. (2012). Atmospheric deposition and inorganic nitrogen flux. Water Air and Soil Pollution, 223, 3565–3575.

    Article  CAS  Google Scholar 

  • Halman, J. M., Schaberg, P. G., Hawley, G. J., Hansen, C. F., & Fahey, T. J. (2015). Differential impacts of calcium and aluminum treatments on sugar maple and American beech growth dynamics. Canadian Journal of Forest Research, 45, 52–59.

    Article  CAS  Google Scholar 

  • Halman, J. M., Schaberg, P. G., Hawley, G. J., Pardo, L. H., & Fahey, T. J. (2013). Calcium and aluminum impacts on sugar maple physiology in a northern hardwood forest. Tree Physiology, 33, 1242–1251.

    Article  CAS  Google Scholar 

  • Hautier, Y., Niklaus, P. A., & Hector, A. (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636–638.

    Article  CAS  Google Scholar 

  • Hazlett, P. W., Emilson,  C. E., Lawrence, G. B., Fernandez, I. J., Ouimet, R., & Bailey, S. W. (2020). Reversal of forest soil acidification in the northeastern United States and eastern Canada: Site and soil factors contributing to recovery. Soil Systems4, 54. https://doi.org/10.3390/soilsystems4030054

  • Horn, K. J., Thomas,  R. Q., Clark, C. M., Pardo, L. H., Fenn, M. E., Lawrence, G. B., Perakis, S. S., Smithwick, E. A. H., Baldwin, D., Braun, S., Nordin, A., Perry, C. H., Phelan, J. N., Schaberg, P. G., St Clair, S. B., Warby, R., & Watmough, S. (2018). Growth and survival relationships of 71 tree species with nitrogen and sulfur deposition across the conterminous U.S. PloS One13(10), e0205296. https://doi.org/10.1371/journal.pone.0205296

  • Houlton, B. Z., Boyer, E., Finzi, A., Galloway, J., Leach, A., Liptzin, D., Melillo, J., Rosenstock, T. S., Sobota, D., & Townsend, A. R. (2013). Intentional versus unintentional nitrogen use in the United States: Trends, efficiency and implications. Biogeochemistry, 114, 11–23.

    Article  Google Scholar 

  • Jeřábková, L., Prescott, C., Titus, B., Hope, G., & Walters, M. (2011). A meta-analysis of the effects of clearcut and variable-retention harvesting on soil nitrogen fluxes in boreal and temperate forests. Canadian Journal of Forest Research, 41, 1852–1870.

    Article  Google Scholar 

  • Jobbágy, E. G., & Jackson, R. B. (2004). The uplift of soil nutrients by plants: Biogeochemical consequences across scales. Ecology, 85, 2380–2389.

    Article  Google Scholar 

  • Johnson, J., Pannatier, E. G., Carnicelli, S., Cecchini, G., Clarke, N., Cools, N., Hansen, K., Meesenburg, H., Nieminen, T. M., Pihl-Karlsson, G., Titeux, H., Vanguelova, E., Verstraeten, A., Vesterdal, L., Waldner, P., & Jonard, M. (2018). The response of soil solution chemistry in European forests to decreasing acid deposition. Global Change Biology, 24, 3603–3619.

    Article  Google Scholar 

  • Kobe, R. K., Likens, G. E., & Eagar, C. (2002). Tree seedling growth and mortality responses to manipulations of calcium and aluminum in a northern hardwood forest. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 32, 954–966.

    Article  CAS  Google Scholar 

  • Lawrence, G. B., Hazlett, P. W., Fernandez, I. J., Ouimet, R., Bailey, S. W., Shortle, W. C., Smith, K. T., & Antidormi, M. R. (2015). Declining acidic deposition begins reversal of forest-soil acidification in the Northeastern US and Eastern Canada. Environmental Science & Technology, 49, 13103–13111.

    Article  CAS  Google Scholar 

  • LeDuc, S. D., & Rothstein, D. E. (2007). Initial recovery of soil carbon and nitrogen pools and dynamics following disturbance in jack pine forests: A comparison of wildfire and clearcut harvesting. Soil Biology & Biochemistry, 39, 2865–2876.

    Article  CAS  Google Scholar 

  • Li, Y., Schichtel, B. A., Walker, J. T., Schwede, D. B., Chen, X., Lehmann, C. M. B., Puchalski, M. A., Gay, D. A., & Collett, J. L. (2016). Increasing importance of deposition of reduced nitrogen in the United States. Proceedings of the National Academy of Sciences of the United States of America, 113, 5874–5879.

    Article  CAS  Google Scholar 

  • Lucas, R. W., Klaminder, J., Futter, M. N., Bishop, K. H., Egnell, G., Laudon, H., & Hogberg, P. (2011). A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. Forest Ecology and Management, 262, 95–104.

    Article  Google Scholar 

  • Lucas, R. W., Sponseller, R. A., & Laudon, H. (2013). Controls over base cation concentrations in stream and river waters: A long-term analysis on the role of deposition and climate. Ecosystems, 16, 707–721.

    Article  CAS  Google Scholar 

  • Luo, Y., Su, B., Currie, W. S., Dukes, J. S., Finzi, A. C., Hartwig, U., Hungate, B., McMurtrie, R. E., Oren, R., Parton, W. J., Pataki, D. E., Shaw, M. R., Zak, D. R., & Field, C. B. (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, 54, 731–739.

    Article  Google Scholar 

  • Mason, R., Zubrow,  A., & Eyth, A. (2013). Emissions inventory for air quality modeling technical support document: Proposed Tier 3 emissions standards. Air Quality Assessment Division, Office of Planning and Standards, US Environmental Protection Agency, Research Triangle Park.

  • McDonnell, T. C., Belyazid, S., Sullivan, T. J., Bell, M., Clark, C., Blett, T., Evans, T., Cass, W., Hyduke, A., & Sverdrup, H. (2018). Vegetation dynamics associated with changes in atmospheric nitrogen deposition and climate in hardwood forests of Shenandoah and Great Smoky Mountains National Parks, USA. Environmental Pollution, 237, 662–674.

    Article  CAS  Google Scholar 

  • McDonnell, T. C., Belyazid, S., Sullivan, T. J., Sverdrup, H., Bowman, W. D., & Porter, E. M. (2014). Modeled subalpine plant community response to climate change and atmospheric nitrogen deposition in Rocky Mountain National Park, USA. Environmental Pollution, 187, 55–64.

    Article  CAS  Google Scholar 

  • McHale, M. R., Burns, D. A., Siemion, J., & Antidormi, M. R. (2017). The response of soil and stream chemistry to decreases in acid deposition in the Catskill Mountains, New York, USA. Environmental Pollution, 229, 607–620.

    Article  CAS  Google Scholar 

  • Murtagh, F., & Legendre, P. (2014). Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? Journal of Classification, 31, 274–295.

    Article  Google Scholar 

  • NADP. (2015). Annual NTN maps by year. Wisconsin State Laboratory of Hygiene, National Atmospheric Deposition Program. , University of Wisconsin. Available at: http://nadp.slh.wisc.edu/NTN/maps.aspx. Accessed 2 Feb 2021.

  • Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics, 37, 637–669.

    Article  Google Scholar 

  • Phelan, J., Belyazid,  S., Jones, P., Cajka, J., Buckley, J., & Clark, C. (2016). Assessing the effects of climate change and air pollution on soil properties and plant diversity in sugar maple-beech-yellow birch hardwood forests in the Northeastern United States: Model simulations from 1900 to 2100. Water Air and Soil Pollution, 227, 84https://doi.org/10.1007/s11270-016-2762-x

  • Pierret, A., Maeght, J.-L., Clément, C., Montoroi, J.-P., Hartmann, C., & Gonkhamdee, S. (2016). Understanding deep roots and their functions in ecosystems: An advocacy for more unconventional research. Annals of Botany, 118, 621–635.

    Article  CAS  Google Scholar 

  • Porter, E. M., Bowman, W. D., Clark, C. M., Compton, J. E., Pardo, L. H., & Soong, J. L. (2013). Interactive effects of anthropogenic nitrogen enrichment and climate change on terrestrial and aquatic biodiversity. Biogeochemistry, 114, 93–120.

    Article  CAS  Google Scholar 

  • Posch, M., & Kurz, D. (2007). A2M - A program to compute all possible mineral modes from geochemical analyses. Computers & Geosciences, 33, 563–572.

    Article  CAS  Google Scholar 

  • PRISM. (2013a). Historical past (1895–1980) climate data. Oregon State University, Corvallis, OR.

    Google Scholar 

  • PRISM. (2013b). Recent years (Jan 1981- Aug 2014) AN81m climate data. Oregon State University, Corvallis, OR.

    Google Scholar 

  • R. (2015). A language and environment for statistical computing. R Core Team, R Foundation for Statistical Computing.

  • Rao, L. E., Allen, E. B., & Meixner, T. (2010). Risk-based determination of critical nitrogen deposition loads for fire spread in southern California deserts. Ecological Applications, 20, 1320–1335.

    Article  Google Scholar 

  • RCP-Database. (2013). RCP Database. RCP (Representative Concentration Pathway) Database version 2.0.5.

  • Reidmiller, D., Avery,  C., Easterling, D., Kunkel, K., Lewis, K., Maycock, T., & Stewart, B. (2018). Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II. US Global Change Research Program.

  • Robison, A. L., & Scanlon, T. M. (2018). Climate change to offset improvements in watershed acid-base status provided by Clean Air Act and Amendments: A model application in Shenandoah National Park, Virginia. Journal of Geophysical Research-Biogeosciences, 123, 2863–2877.

    Article  Google Scholar 

  • Rockstrom, J., Steffen,  W., Noone, K., Persson, A., Chapin, F. S., Lambin, E., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., de Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sorlin, S., Snyder, P. K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., & Foley, J. (2009). Planetary boundaries: Exploring the safe operating space for humanity. Ecology and Society, 14(2), 32. https://www.ecologyandsociety.org/vol14/iss2/art32/

  • Sabo, R. D., Clark, C. M., Bash, J., Sobota, D., Cooter, E., Dobrowolski, J. P., Houlton, B. Z., Rea, A., Schwede, D., Morford, S. L., & Compton, J. E. (2019). Decadal shift in nitrogen inputs and fluxes across the contiguous United States: 2002–2012. Journal of Geophysical Research-Biogeosciences, 124, 3104–3124.

    Article  Google Scholar 

  • Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., Poff, N. L., Sykes, M. T., Walker, B. H., Walker, M., & Wall, D. H. (2000). Biodiversity - Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774.

    Article  CAS  Google Scholar 

  • SanClements, M. D., Fernandez, I. J., & Norton, S. A. (2010). Soil chemical and physical properties at the Bear Brook Watershed in Maine, USA. Environmental Monitoring and Assessment, 171, 111–128.

    Article  CAS  Google Scholar 

  • Shortle, W. C., & Smith, K. T. (1988). Aluminum-induced calcium deficiency syndrome in declining red spruce. Science, 240, 1017–1018.

    Article  CAS  Google Scholar 

  • Simkin, S. M., Allen, E. B., Bowman, W. D., Clark, C. M., Belnap, J., Brooks, M. L., Cade, B. S., Collins, S. L., Geiser, L. H., Gilliam, F. S., Jovan, S. E., Pardo, L. H., Schulz, B. K., Stevens, C. J., Suding, K. N., Throop, H. L., & Waller, D. M. (2016). Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proceedings of the National Academy of Sciences of the United States of America, 113, 4086–4091.

    Article  CAS  Google Scholar 

  • Sinha, E., & Michalak, A. M. (2016). Precipitation dominates interannual variability of riverine nitrogen loading across the continental United States. Environmental Science & Technology, 50, 12874–12884.

    Article  CAS  Google Scholar 

  • Stevens, C. J. (2016). How long do ecosystems take to recover from atmospheric nitrogen deposition? Biological Conservation, 200, 160–167.

    Article  Google Scholar 

  • Stevens, C. J., Dupre, C., Dorland, E., Gaudnik, C., Gowing, D. J. G., Bleeker, A., Diekmann, M., Alard, D., Bobbink, R., Fowler, D., Corcket, E., Mountford, J. O., Vandvik, V., Aarrestad, P. A., Muller, S., & Dise, N. B. (2010). Nitrogen deposition threatens species richness of grasslands across Europe. Environmental Pollution, 158, 2940–2945.

    Article  CAS  Google Scholar 

  • Sverdrup, H., Belyazid, S., Nihlgård, B., & Ericson, L. (2007). Modelling change in ground vegetation response to acid and nitrogen pollution, climate change and forest management in Sweden 1500–2100 A.D. Water, Air, & Soil Pollution: Focus, 7, 163–179.

    Article  CAS  Google Scholar 

  • Thomas, R. Q., Zaehle, S., Templer, P. H., & Goodale, C. L. (2013). Global patterns of nitrogen limitation: Confronting two global biogeochemical models with observations. Global Change Biology, 19, 2986–2998.

    Article  Google Scholar 

  • Thrasher, B., Xiong, J., Wang, W., Melton, F., Michaelis, A., & Nemani, R. (2013). Downscaled climate projections suitable for resource management. Eos, Transactions American Geophysical Union, 94, 321–323.

    Article  Google Scholar 

  • Throop, H. L., & Lerdau, M. T. (2004). Effects of nitrogen deposition on insect herbivory: Implications for community and ecosystem processes. Ecosystems, 7, 109–133.

    Article  CAS  Google Scholar 

  • USGCRP. (2018). Impacts, risks, and adaptation in the United States: Fourth National Climate Assessment, Volume II. U.S. Global Change Research Program.

  • Vitousek, P. M., & Howarth, R. W. (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87–115.

    Article  Google Scholar 

  • Vose, R. S., Easterling,  D. R., Kunkel, K. E., LeGrande, A. N., & Wehner, M. F. (2017). Temperature changes in the United States. In D. J. Wuebbles, D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, & T. K. Maycock (Eds). Climate Science Special Report: Fourth National Climate Assessment (pp. 185–206) Volume I. U.S. Global Change Research Program.

  • Wallman, P., Svensson, M. G. E., Sverdrup, H., & Belyazid, S. (2005). ForSAFE - An integrated process-oriented forest model for long-term sustainability assessments. Forest Ecology and Management, 207, 19–36.

    Article  Google Scholar 

  • Warby, R. A. F., Johnson, C. E., & Driscoll, C. T. (2009). Continuing acidification of organic soils across the Northeastern USA: 1984–2001. Soil Science Society of America Journal, 73, 274–284.

    Article  CAS  Google Scholar 

  • Warfvinge, P., & Sverdrup, H. (1992). Calculating critical loads of acid deposition with PROFILE-a steady-state soil chemistry model. Water Air and Soil Pollution, 63, 119–143.

    Article  CAS  Google Scholar 

  • Westerling, A. L., Turner, M. G., Smithwick, E. A. H., Romme, W. H., & Ryan, M. G. (2011). Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proceedings of the National Academy of Sciences of the United States of America, 108, 13165–13170.

    Article  CAS  Google Scholar 

  • Wieder, W. R., Lawrence, D. M., Fisher, R. A., Bonan, G. B., Cheng, S. J., Goodale, C. L., Grandy, A. S., Koven, C. D., Lombardozzi, D. L., Oleson, K. W., & Thomas, R. Q. (2019). Beyond static benchmarking: Using experimental manipulations to evaluate land model assumptions. Global Biogeochemical Cycles, 33, 1289–1309.

    Article  CAS  Google Scholar 

  • Wu, W., & Driscoll, C. T. (2010). Impact of climate change on three-dimensional dynamic critical load functions. Environmental Science & Technology, 44, 720–726.

    Article  CAS  Google Scholar 

  • Zavaleta, E. S., Shaw, M. R., Chiariello, N. R., Mooney, H. A., & Field, C. B. (2003). Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proceedings of the National Academy of Sciences of the United States of America, 100, 7650–7654.

    Article  CAS  Google Scholar 

  • Zhou, Q. T., Driscoll, C. T., & Sullivan, T. J. (2015). Responses of 20 lake-watersheds in the Adirondack region of New York to historical and potential future acidic deposition. Science of the Total Environment, 511, 186–194.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The views expressed in this paper are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. We gratefully acknowledge the efforts of people who made this study possible. Many thanks to Elizabeth Burrill for her assistance in acquiring the USFS FIA plot data. The understory plant database was the product of an expert workshop held at Hubbard Brook Research Forest. We extend our appreciation to Bengt Nihlgard, Harald Sverdrup, Leslie Adams, Matt Arsenault, Brett Engstrom, Dan Sperduto, David Werier, Scott Bailey, and Natalie Cleavitt who attended this meeting, and to the staff at the Hubbard Brook Research forest who supported the workshop. Lastly, we thank J. Travis Smith, Tara Greaver, and an anonymous reviewer for the comments on the earlier drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen D. LeDuc or Christopher M. Clark.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1468 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LeDuc, S.D., Clark, C.M., Phelan, J. et al. Nitrogen and Sulfur Deposition Reductions Projected to Partially Restore Forest Soil Conditions in the US Northeast, While Understory Composition Continues to Shift with Future Climate Change. Water Air Soil Pollut 233, 376 (2022). https://doi.org/10.1007/s11270-022-05793-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05793-5

Keywords

Navigation