Skip to main content

Advertisement

Log in

Psidium guajava (L.)—a Bioeconomic Plant for Restoration of Industrial Solid Waste Dump: a Green and Sustainable Approach

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Solid wastes generated from industrial sponge iron plants (ISP) are categorized as hazardous waste due to their extremely fine, loose texture, toxic metal concentrations, and being wind borne in summer; their unscientific disposal leads to severe land degradation and environmental pollution. In the present study, phytorestoration of such a hazardous waste dump in central India was carried out through blanketing with forest soil (substratum for vegetation growth) followed by plantation with Psidium guajava (L.) saplings (2500 saplings/ha). The present study aimed to assess the efficiency of fruit orchards in restoring the soil health of waste dumps (WD) without causing any health hazards, allowing the possibility for an economically viable after use of the degraded land. Heavy metal concentration (Mn, Zn, Cu, Cr, Ni) in blanketed topsoil, plant tissues (roots, leaves, fruits), and its associated risk due to consumption of guava fruits were analysed. Soil health with reference to organic carbon (1.7%), total nitrogen (1727.7 mg kg−1), and exchangeable potassium (162.3 mg kg−1) at the 7-year-old restored site was significantly higher than that of the initial stage of revegetation. No probables of health risk was found due to consumption of guava fruit (growing on WD) as the target hazard quotient (THQ) of all the metals in fruit was <1. Restoration cost analysis of the present study showed that only 5% of total costs were responsible for the development of fruit orchards. Therefore, the study concluded that fruit orchards could be a sustainable alternative for phytorestoration of WD, which will also provide socio-economic return to stakeholders.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are not publicly available due to the research purposes of the first author (pursuing Ph.D.) but are available from the corresponding author on reasonable request.

References

  • Adrian, J. A. L., Arancon, N. Q., Mathews, B. W., & Carpenter, J. R. (2015). Mineral composition and soil-plant relationships for common guava (Psidiumguajava L.) and yellow strawberry guava (Psidiumcattleianum var. lucidum) tree parts and fruits. Communications in Soil Science and Plant Analysis, 46(15), 1960–1979. https://doi.org/10.1080/00103624.2015.1069310

    Article  CAS  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1990). Soil processes and the behaviour of metals. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 13–20). Blackie Academic & Professional.

    Google Scholar 

  • Alloway, B. J. (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (3rd ed.). Springer.

    Book  Google Scholar 

  • Amin, H., Ahmed, A. B., Abbasi, M. S., Amin, F., Jahangir, T. M., & Soomro, N. U. A. (2019). Evaluation of chromium phyto-toxicity, phyto-tolerance, and phyto-accumulation using biofuel plants for effective phytoremediation. International Journal of Phytoremediation, 21(4), 352–363. https://doi.org/10.1080/15226514.2018.1524837

    Article  CAS  Google Scholar 

  • Ang, L. H., & Ng, L. T. (2000). Trace element concentration in mango (Mangiferaindica L.), seedless guava (Psidiumguajava L.) and papaya (Carica papaya L.) grown on agricultural and ex-mining lands of Bidor, Perak. Pertanika Journal of Tropical Agricultural Science., 23(1), 15–22.

    Google Scholar 

  • Arenas-Lago, D., Santos, E. S., Carvalho, L. C., Abreu, M. M., & Andrade, M. L. (2018). Cistus monspeliensis L. as a potential species for rehabilitation of soils with multi elemental contamination under Mediterranean conditions. Environmental Science and Pollution Research., 25(7), 6443–6455. https://doi.org/10.1007/s11356-017-0957-3

    Article  CAS  Google Scholar 

  • Awashthi, S. K. (2000). Prevention of Food Adulteration Act no. 37 of 1954. Central and State Rules as Amended for 1999 (3rd ed.). Ashoka Law House.

    Google Scholar 

  • Baker, D. E. (1990). Copper. In B. J. Alloway (Ed.), Heavy metals in soils (p. 166). Blackie Academic & Professional.

    Google Scholar 

  • Bandyopadhyay, S., & Maiti, S. K. (2021). Application of statistical and machine learning approach for prediction of soil quality index formulated to evaluate trajectory of ecosystem recovery in coal mine degraded land. Ecological Engineering, 170, 106351. https://doi.org/10.1016/j.ecoleng.2021.106351

    Article  Google Scholar 

  • Bandyopadhyay, S., Rana, V., & Maiti, S. K. (2018). Chronological variation of metals in reclaimed coal mine soil and tissues of Eucalyptus hybrid tree after 25 years of reclamation, Jharia coal field (India). Bulletin of Environmental Contamination and Toxicology, 101(5), 604–610. https://doi.org/10.1007/s00128-018-2466-6

    Article  CAS  Google Scholar 

  • Bandyopadhyay, S., Novo, L. A., Pietrzykowski, M., & Maiti, S. K. (2020). Assessment of forest ecosystem development in coal mine degraded land by using Integrated Mine Soil Quality Index (IMSQI): The evidence from India. Forests, 11(12), 1310. https://doi.org/10.3390/f11121310

    Article  Google Scholar 

  • Berni, R., Luyckx, M., Xu, X., Legay, S., Sergeant, K., Hausman, J. F., Lutts, S., Cai, G., & Guerriero, G. (2019). Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environmental and Experimental Botany, 161, 98–106. https://doi.org/10.1016/j.envexpbot.2018.10.017

    Article  CAS  Google Scholar 

  • Boechat, C. L., Pistóia, V. C., Gianelo, C., & de Oliveira Camargo, F. A. (2016). Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul state. Brazil. Environmental Science and Pollution Research, 23(3), 2371–2380. https://doi.org/10.1007/s11356-015-5342-5

    Article  CAS  Google Scholar 

  • Dakshinamurthi, C., Gupta, R.P., 1968. Practicals in soil physics. IARI, New Delhi.

  • DalCorso, G., Fasani, E., Manara, A., Visioli, G., & Furini, A. (2019). Heavy metal pollutions: State of the art and innovation in phytoremediation. International Journal of Molecular Sciences, 20(14), 3412. https://doi.org/10.3390/ijms20143412

    Article  CAS  Google Scholar 

  • EPA, 2018 Intake of Fruits and Vegetables In: Update for Chapter 9 of the exposure factors handbook. https://www.epa.gov/sites/production/files/2018-08/documents/efh_-_chapter_9_update.pdf

  • FAO/WHO (2007) Codex Alimentarius – fresh fruits and vegetables, first edition. WHO - Food and Agriculture Organization of the United Nations, Rome, 2007.

  • Gerwing, T.G., Hawkes, V.C., Gann, G.D. & Murphy, S.D. (2021). Restoration, reclamation, and rehabilitation: on the need for, and positing a definition of, ecological reclamation. Restoration Ecology, pp. 13461. https://doi.org/10.1111/rec.13461

  • Ghosh, S. P., Raj, D., & Maiti, S. K. (2020). Risks assessment of heavy metal pollution in roadside soil and vegetation of national highway crossing through industrial area. Environmental Processes, 7(4), 1197–1220. https://doi.org/10.1007/s40710-020-00463-2

    Article  CAS  Google Scholar 

  • Guerra, F., Trevizam, A. R., Muraoka, T., Marcante, N. C., & Canniatti-Brazaca, S. G. (2012). Heavy metals in vegetables and potential risk for human health. Scientia Agricola, 69(1), 54–60. https://doi.org/10.1590/S0103-90162012000100008

    Article  CAS  Google Scholar 

  • Gupta, S. K., Ansari, F. A., Nasr, M., Chabukdhara, M., & Bux, F. (2018). Multivariate analysis and health risk assessment of heavy metal contents in foodstuffs of Durban. South Africa. Environmental Monitoring and Assessment, 190(3), 1–15. https://doi.org/10.1007/s10661-018-6546-1

    Article  CAS  Google Scholar 

  • Hailemariam, T., Aregahegn, A., Bekele, T., & Madhusudhan, A. (2015). Investigation of the levels of selected metals in edible and medicinal fruits grown in Dilla, Ethiopia. Research Journal of Chemical and Environmental Science, 3(4), 44–53.

    CAS  Google Scholar 

  • Islam, M. S., Ahmed, M. K., Habibullah-Al-Mamun, M., & Raknuzzaman, M. (2015). The concentration, source and potential human health risk of heavy metals in the commonly consumed foods in Bangladesh. Ecotoxicology and Environmental Safety, 122, 462–469. https://doi.org/10.1016/j.ecoenv.2015.09.022

    Article  CAS  Google Scholar 

  • Ismail, F., Anjum, M. R., Mamon, A. N., & Kazi, T. G. (2011). Trace metal contents of vegetables and fruits of Hyderabad retail market. Pakistan Journal of Nutrition, 10(4), 365–372.

    Article  CAS  Google Scholar 

  • Jackson, M.L., (2005). Soil chemical analysis: Advanced course. 2nd ed., rev. University of Wisconsin – Madison Libraries, Madison, Wis., pp. 252–285.

  • Jayaweera, M., Gunawardana, B., Gunawardana, M., Karunawardena, A., Dias, V., Premasiri, S., Dissanayake, J., Manatunge, J., Wijeratne, N., Karunarathne, D., & Thilakasiri, S. (2019). Management of municipal solid waste open dumps immediately after the collapse: An integrated approach from Meethotamulla open dump, Sri Lanka. Waste Management, 95, 227–240. https://doi.org/10.1016/j.wasman.2019.06.019

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. Chemical Rubber Company Press.

    Google Scholar 

  • Kanda, A., Ncube, F., & Chikosi, R. (2016). Assessment of chromium in orchard soil and fruit irrigated with treated chromite mine effluent and potential dietary health implications. IOSR Journal of Environmental Science, Toxicology and Food Technology, 10(11), 40–46.

    CAS  Google Scholar 

  • Kee, J. C., Gonzales, M. J., Ponce, O., Ramírez, L., León, V., Torres, A., Corpus, M., & Loayza-Muro, R. (2018). Accumulation of heavy metals in native Andean plants: Potential tools for soil phytoremediation in Ancash (Peru). Environmental Science and Pollution Research., 25(34), 33957–33966. https://doi.org/10.1007/s11356-018-3325-z

    Article  CAS  Google Scholar 

  • Khairiah, J., Ding-Woei, Y., Habibah, J., Ahmad-Mahir, R., Aminah, A., & Ismail, B. S. (2009). Concentration of heavy metals in guava plant parts and soil in the Sungai Wangi Plantation, Perak. Malaysia. International Journal of Agricultural Research., 4(10), 310–316.

    Article  CAS  Google Scholar 

  • Kisku, G. C., Kumar, V., Sahu, P., Kumar, P., & Kumar, N. (2018). Characterization of coal fly ash and use of plants growing in ash pond for phytoremediation of metals from contaminated agricultural land. International Journal of Phytoremediation., 20(4), 330–337. https://doi.org/10.1080/15226514.2017.1381942

    Article  CAS  Google Scholar 

  • Kumar, A., & Maiti, S. K. (2014). Translocation and bioaccumulation of metals in Oryza sativa and Zea mays growing in chromite-asbestos contaminated agricultural fields, Jharkhand, India. Bulletin of Environmental Contamination and Toxicology, 93(4), 434–441. https://doi.org/10.1007/s00128-014-1339-x

    Article  CAS  Google Scholar 

  • Kumar, S., Maiti, S. K., & Chaudhuri, S. (2015). Soil development in 2–21 years old coalmine reclaimed spoil with trees: A case study from Sonepur-Bazari opencast project, Raniganj Coalfield. India. Ecological Engineering., 84, 311–324. https://doi.org/10.1016/j.ecoleng.2015.09.043

    Article  Google Scholar 

  • Kumar, M., Tomar, M., Amarowicz, R., Saurabh, V., Nair, M. S., Maheshwari, C., Sasi, M., Prajapati, U., Hasan, M., Singh, S., & Changan, S. (2021). Guava (Psidiumguajava L.) leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities. Foods, 10(4), 752. https://doi.org/10.3390/foods10040752

    Article  CAS  Google Scholar 

  • Kumari, A., Lal, B., & Rai, U. N. (2016). Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon. India. International Journal of Phytoremediation., 18(6), 592–597. https://doi.org/10.1080/15226514.2015.1086301

    Article  CAS  Google Scholar 

  • Kumari, P., Mankar, A., Karuna, K., Homa, F., Meiramkulova, K., & Siddiqui, M. W. (2020). Mineral composition, pigments, and postharvest quality of guava cultivars commercially grown in India. Journal of Agriculture and Food Research, 2, 100061. https://doi.org/10.1016/j.jafr.2020.100061

    Article  Google Scholar 

  • Lei, H., Peng, Z., Yigang, H., & Yang, Z. (2016). Vegetation and soil restoration in refuse dumps from open pit coal mines. Ecological Engineering, 94, 638–646. https://doi.org/10.1016/j.ecoleng.2016.06.108

    Article  Google Scholar 

  • Mahdavian, S. E., & Somashekar, R. K. (2008). Heavy metals and safety of fresh fruits in Bangalore city, India - A case study. Kathmandu University Journal of Science, Engineering and Technology, 4(1), 17–27. https://doi.org/10.3126/kuset.v4i1.2880

    Article  Google Scholar 

  • Maiti, S. K. (2013). Ecorestoration of the coal mine degraded lands. Springer.

    Book  Google Scholar 

  • Maiti, S. K., & Maiti, D. (2015). Ecological restoration of waste dumps by topsoil blanketing, coir-matting and seeding with grass–legume mixture. Ecological Engineering, 77, 74–84. https://doi.org/10.1016/j.ecoleng.2015.01.003

    Article  Google Scholar 

  • Maiti, S. K., Kumar, A., & Ahirwal, J. (2016). Bioaccumulation of metals in timber and edible fruit trees growing on reclaimed coal mine overburden dumps. International Journal of Mining, Reclamation and Environment, 30(3), 231–244. https://doi.org/10.1080/17480930.2015.1038864

    Article  CAS  Google Scholar 

  • Mao, D., Wang, Z., Wu, B., Zeng, Y., Luo, L., & Zhang, B. (2018). Land degradation and restoration in the arid and semiarid zones of China: Quantified evidence and implications from satellites. Land Degradation & Development, 29(11), 3841–3851. https://doi.org/10.1002/ldr.3135

    Article  Google Scholar 

  • Mishra, T., Pandey, V.C., Praveen, A., Singh, N.B., Singh, N., and Singh, D.P. (2020). Phytoremediation ability of naturally growing plant species on the electroplating wastewater-contaminated site. Environmental Geochemistry and Health. pp. 1–11. https://doi.org/10.1007/s10653-020-00529-y

  • Monterroso, C., Rodriguez, F., Chaves, R., Diez, J., Becerra-Castro, C., Kidd, P. S., & Macias, F. (2014). Heavy metal distribution in mine-soils and plants growing in a Pb/Zn – mining area in NW Spain. Applied Geochemitry., 44, 3–11. https://doi.org/10.1016/j.apgeochem.2013.09.001

    Article  CAS  Google Scholar 

  • Mukhopadhyay, S., Maiti, S. K., & Masto, R. E. (2014). Development of mine soil quality index (MSQI) for evaluation of reclamation success: A chronosequence study. Ecological Engineering, 71, 10–20. https://doi.org/10.1016/j.ecoleng.2014.07.001

    Article  Google Scholar 

  • Nawab, J., Farooqi, S., Xiaoping, W., Khan, S., & Khan, A. (2018). Levels, dietary intake, and health risk of potentially toxic metals in vegetables, fruits, and cereal crops in Pakistan. Environmental Science and Pollution Research, 25(6), 5558–5571. https://doi.org/10.1007/s11356-017-0764-x

    Article  CAS  Google Scholar 

  • Nelson, D.W.; and Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of soil analysis. Part 3, Chemical methods, 3rd ed.; Sparks, D.L., Ed.; SSSA Book Series 5; ASA and SSSA: Madison, WI, USA, 1996; pp. 961–1010.

  • Okoye, C. O. (2001). Trace metal concentrations in Nigerian fruits and vegetables. International Journal of Environmental Studies, 58(4), 501–509. https://doi.org/10.1080/00207230108711346

    Article  CAS  Google Scholar 

  • Olsen, S.R., and Sommers, L.E., 1982. Phosphorus. In: Page AL et al (eds) Methods of soil analysis, part 2, 2nd ed. ASA and SSSA, Madison, WI, pp 403–430.

  • Oti, W. O. (2015). Bioaccumulation factors and pollution indices of heavy metals in selected fruits and vegetables from a derelict mine and their associated health implications. International Journal of Environment and Sustainable Development, 4(1), 15–23.

    Google Scholar 

  • Parrotta, L., Guerriero, G., Sergeant, K., Cai, G., & Hausman, J. F. (2015). Target or barrier? The cell wall of early-and later-diverging plants vs cadmium toxicity: Differences in the response mechanisms. Frontiers in Plant Science, 6, 133. https://doi.org/10.3389/fpls.2015.00133

    Article  Google Scholar 

  • Pasricha, S., Mathur, V., Garg, A., Lenka, S., Verma, K., & Agarwal, S. (2021). Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis: Heavy metal tolerance in hyperaccumulators. Environmental Challenges, 4, 100197. https://doi.org/10.1016/j.envc.2021.100197

    Article  CAS  Google Scholar 

  • Pereira, M. C., Boschetti, W., Rampazzo, R., Celso, P. G., Hertz, P. F., Rios, A. D., Vizzotto, M., & Flores, S. H. (2014). Mineral characterization of native fruits from the southern region of Brazil. Food Science and Technology, 34(2), 258–266. https://doi.org/10.1590/fst.2014.0049

    Article  Google Scholar 

  • Pietrzykowski, M. (2014). Soil quality index as a tool for Scots pine (Pinus sylvestris) monoculture conversion planning on afforested, reclaimed mine land. Journal of Forestry Research, 25(1), 63–74. https://doi.org/10.1007/s11676-013-0418-x

    Article  CAS  Google Scholar 

  • Piper, C. S. (2019). Soil and plant analysis: A laboratory manual of methods for the examination of soils and determination of the inorganic constituents of plants; Scientific Publishers: Jodhpur. Rajasthan.

    Google Scholar 

  • Qu, J. F., Hou, Y. L., Ge, M. Y., Wang, K., Liu, S., Zhang, S. L., Li, G., & Chen, F. (2017). Carbon dynamics of reclaimed coal mine soil under agricultural use: A chronosequence study in the Dongtan mining area, Shandong Province. China. Sustainability, 9(4), 629. https://doi.org/10.3390/su9040629

    Article  CAS  Google Scholar 

  • Raj, D., Kumar, A., & Maiti, S. K. (2020). Brassica juncea (L.) Czern. (Indian mustard): A putative plant species to facilitate the phytoremediation of mercury contaminated soils. International Journal of Phytoremediation., 22(7), 733–744. https://doi.org/10.1080/15226514.2019.1708861

    Article  CAS  Google Scholar 

  • Rana, V., & Maiti, S. K. (2018). Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India). Environmental Science and Pollution Research, 25(10), 9745–9758. https://doi.org/10.1007/s11356-018-1254-5

    Article  CAS  Google Scholar 

  • Ricachenevsky, F. K., de Araújo Junior, A. T., Fett, J. P., & Sperotto, R. A. (2018). You shall not pass: Root vacuoles as a symplastic checkpoint for metal translocation to shoots and possible application to grain nutritional quality. Frontiers in Plant Science, 9, 412. https://doi.org/10.3389/fpls.2018.00412

    Article  Google Scholar 

  • Saha, N., & Zaman, M. R. (2013). Evaluation of possible health risks of heavy metals by consumption of foodstuffs available in the central market of Rajshahi City. Bangladesh. Environmental Monitoring and Assessment, 185(5), 3867–3878. https://doi.org/10.1007/s10661-012-2835-2

    Article  CAS  Google Scholar 

  • Sajib, M. A. M., Hoque, M. M., Yeasmin, S., & Khatun, M. H. A. (2014). Minerals and heavy metals concentration in selected tropical fruits of Bangladesh. International Food Research Journal, 21(5), 1731–1736.

    CAS  Google Scholar 

  • Shaheen, N., Irfan, N. M., Khan, I. N., Islam, S., Islam, M. S., & Ahmed, M. K. (2016). Presence of heavy metals in fruits and vegetables: Health risk implications in Bangladesh. Chemosphere, 152, 431–438. https://doi.org/10.1016/j.chemosphere.2016.02.060

    Article  CAS  Google Scholar 

  • Shi, W., Zhang, Y., Chen, S., Polle, A., Rennenberg, H., & Luo, Z. B. (2019). Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. Plant, Cell & Environment, 42(4), 1087–1103. https://doi.org/10.1111/pce.13471

    Article  CAS  Google Scholar 

  • Society for Ecological Restoration (2004) SER international primer on ecological restoration. Society for Ecological Restoration International Science & Policy Working Group, version 2, October, 2004. Retrieved from http://www.ser.org/resources/resources-detail-view/serinternational-primer-on-ecological-restoration.

  • Subbiah, B. V., & Asija, G. L. (1956). A rapid procedure for the estimation of available nitrogen in soils. Current Science., 25(8), 259–260.

    CAS  Google Scholar 

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: A new table. Geochimica Et Cosmochimica Acta, 28(8), 1273–1285.

    Article  CAS  Google Scholar 

  • Thakur, S., Singh, L., Wahid, Z. A., Siddiqui, M. F., Atnaw, S. M., & Din, M. F. M. (2016). Plant-driven removal of heavy metals from soil: Uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environmental Monitoring and Assessment, 188(4), 1–11. https://doi.org/10.1007/s10661-016-5211-9

    Article  Google Scholar 

  • Tisdale, S. L., Nelson, W. L., Beaton, J. D., & Havlin, J. L. (1985). Soil fertility and fertiliser (5th ed.). McMillan Publishing Co.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). 1997. Exposure factors handbook—general factors. Office of Research and Development, Washington, DC, USA.

  • USEPA. 2001. United States Environmental Protection Agency supplemental guidance for developing soil screening levels for superfund site. Peer Rev. Draft. OSWER 9355, 4–24. Office of Solid Waste and Emergency Response. Washington, DC: US Environmental Protection Agency.

  • USEPA. 2010. Risk based concentration table. Available from: http://www.epa.gov/reg3hwmd/risk/human/index.html

  • Yami, S. G., Chandravanshi, B. S., Wondimu, T., & Abuye, C. (2016). Assessment of selected nutrients and toxic metals in fruits, soils and irrigation waters of Awara Melka and Nura Era farms. Ethiopia. Springer plus, 5(1), 747. https://doi.org/10.1186/s40064-016-2382-3

    Article  CAS  Google Scholar 

  • Yan, A., Wang, Y., Tan, S. N., MohdYusof, M. L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359. https://doi.org/10.3389/fpls.2020.00359

    Article  Google Scholar 

  • Yang, Y., Liang, Y., Ghosh, A., Song, Y., Chen, H., & Tang, M. (2015). Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead–zinc mine area: Potential applications for phytoremediation. Environmental Science and Pollution Research, 22(17), 13179–13193. https://doi.org/10.1007/s11356-015-4521-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a Ph.D. fellowship provided by the Ministry of Human Resource Development, Government of India, to the first author (Reg. no. 17DR000508). The authors thank the Indian Institute of Technology (ISM), Dhanbad, for providing laboratory facilities used to carry out this study.

Author information

Authors and Affiliations

Authors

Contributions

Sneha Bandyopadhyay: conceptualization, methodology, investigation, visualization, software, validation, writing—original draft, and writing—review and editing.

Subodh Kumar Maiti: resources, supervision, and writing—review and editing.

Corresponding author

Correspondence to Subodh Kumar Maiti.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Implications for Practice.

• Phytorestoration of industrial solid waste dumps is essential to reduce environmental pollution and threats to humans.

• Fruit orchards could be a sustainable alternative for phytorestoration that will also provide economic returns to stakeholders.

• Blanketing of the waste dump surface with sufficient forest soil could reduce metal translocation into vegetation species.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandyopadhyay, S., Maiti, S.K. Psidium guajava (L.)—a Bioeconomic Plant for Restoration of Industrial Solid Waste Dump: a Green and Sustainable Approach. Water Air Soil Pollut 233, 312 (2022). https://doi.org/10.1007/s11270-022-05775-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05775-7

Keywords

Navigation