Skip to main content

Advertisement

Log in

Laboratory Studies on the Adsorption of Acetamiprid to Activated Carbon from Pomegranate Waste

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Adsorption is a promising alternative due to the good treatment efficiency for the removal of recalcitrant compounds, particularly if the adsorbent is inexpensive and readily available. This study focuses on the elimination of the pesticide acetamiprid by adsorption onto activated carbon (AC) prepared from a pomegranate bark (PB) biomass using different activation methods. Batch experiments were carried out to study the effect of operational factors like the adsorbent dose, initial pH, contact time, and temperature; synthetic water polluted by acetamiprid at several concentrations was used. H3PO4 used as activation agent gives the best removal efficiency with an abatement of 59% at neutral pH (~ 6.5). As expected, the performance increases with increasing the adsorbent dose and decreasing the acetamiprid concentration until 0.5 g L−1 and 30 mg L−1 respectively. Equilibrium isotherms have been analyzed by using the Langmuir and Freundlich models, which elucidate the acetamiprid uptake on activated carbon throughout the studied concentration range and fit well the experimental data. This study clearly shows that the activated carbon synthetized from pomegranate bark is an attractive alternative to the commercially available adsorbent for the removal of BPA from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets obtained during this study are available from the corresponding author on reasonable request.

References

  • Afkhami, A., Madrakian, T., & Karimi, Z. (2007). The effect of acid treatment of carbon cloth on the adsorption of nitrite and nitrate ions. Journal of Hazardous Materials, 144, 427–431.

    Article  CAS  Google Scholar 

  • Alkherraz, A. M., Ali, A. K., & Elsherif, K. M. (2020). Removal of Pb (II), Zn (II), Cu (II) and Cd (II) from aqueous solutions by adsorption onto olive branches activated carbon: Equilibrium and thermodynamic studies. Journal of Chemistry International, 6(1), 11–20.

    CAS  Google Scholar 

  • Anfar Z., El Haouti R, Lhanafi S., Benafqir M., Azougarh Y., El Alem N., (2017). Treated digested residue during anaerobic co-digestion of agri-food organic waste: Methylene blue adsorption, mechanism and CCD-RSM design. Journal of Environmental Chemical Engineering. 5, 5857–5867.

  • Arambarri, I., Lasa, M., Garcia, R., & Millán, E. (2004). Determination of fuel dialkyl ethers and BTEX in water using headspace solid-phase microextraction and gas chromatography-flame ionization detection. Journal of Chromatography A, 1033(2), 193–203. https://doi.org/10.1016/j.chroma.2004.01.046

    Article  CAS  Google Scholar 

  • Azoudj, Y., Merzougui, Z., Rekhila, G., & Trari, M. (2018). The adsorption of HCrO4 on activated carbon of date pits and its photoreduction on the hetero-system ZnCo2O4/TiO2. Applied Water Science, 8(4), 114. https://doi.org/10.1007/s13201-018-0755-1

    Article  CAS  Google Scholar 

  • Habi Ben Hariz, S., Lahmar, H., Rekhila, G., Bouhala, A., Trari, M., & Benamira, M. (2022). A novel MgCr2O4 / WO3 hetero-junction photocatalyst for solar photo reduction of hexavalent chromium Cr (VI). Journal of Photochemistry & Photobiology, A : Chemistry, 430.

  • Douafer, S., Lahmar, H., Benamira, M., Rekhila, G., Trari, M., (2018). Physical and photoelectrochemical properties of the spinel LiMn2O4 and its application in photocatalysis. Journal of Physics and Chemistry of Solids 1–7. https://doi.org/10.1016/j.jpcs.2018.02.053

  • Kulumkan, S., Isaak, D., Bakyt, B., & Zhypargul, A. (2019). Activated carbon obtained from the cotton processing wastes. Diamond and Related Materials, 91, 90–97.

    Article  Google Scholar 

  • Lillo-Ródenas, M. A., Fletcher, A. J., Thomas, K. M., Cazorla-Amorós, D., & Linares-Solano, A. (2006). Competitive adsorption of a benzene-toluene mixture on activated carbons at low concentration. Carbon, 44(8), 1455–1463. https://doi.org/10.1016/j.carbon.2005.12.001

    Article  CAS  Google Scholar 

  • Lu, J., Zhang, Z., Lin, X., Chen, Z., Li, B., & Zhang, Y. (2022). Removal of imidacloprid and acetamiprid in tea (Camellia sinensis) infusion by activated carbon and determination by HPLC. Food Control 131, 108395. https://doi.org/10.1016/j.foodcont.2021.108395

  • Milmile, S. N., Pande, J. V., Karmakar, S., Bansiwal, A., Chakrabarti, T., & Biniwale, R. B. (2011). Equilibrium isotherm and kinetic modeling of the adsorption of nitrates by anion exchange Indion NSSR resin. Desalination, 276, 38–44.

    Article  CAS  Google Scholar 

  • Nowicki, P. (2016). The effect of mineral matter on the physicochemical and sorption properties of brown coal-based activated carbons. Adsorption, 22(4–6), 561–569. https://doi.org/10.1007/s10450-015-9729-x

    Article  CAS  Google Scholar 

  • Nowicki, P., Pietrzak, R., & Wachowska, H. (2008). Comparison of physicochemical properties of nitrogen-enriched activated carbons prepared by physical and chemical activation of brown coal. Energy Fuels, 22, 4133–4138.

    Article  CAS  Google Scholar 

  • Ouagagui, O., Rekhila, G., Nedjar, R., & Trari, M. (2020). Soft-chemical synthesis and characterization of new niobate Ca0.5 Nb3O8.1.5H2O : Application to the degradation of Rhodamine B under solar light. Journal of Photochemistry & Photobiology A: Chemistry, 398, 112610. https://doi.org/10.1016/j.jphotochem.2020.112610

    Article  CAS  Google Scholar 

  • Padervand, M., Ghasemi, S., Hajiahmadi, S., & Wang, C. (2021). K4Nb6O17/Fe3N/α-Fe2O3/C3N4 as an enhanced visible light-driven quaternary photocatalyst for acetamiprid photodegradation, CO2 reduction, and cancer cells treatment. Applied Surface Science, 544, 148939. https://doi.org/10.1016/j.apsusc.2021.148939

  • Rekhila, G., Saidani, A., Hocine, F., Habi ben hariz, S., & Trari, M. (2020). Characterization of the hetero - system ZnCo2O4 / ZnO prepared by sol gel : Application to the degradation of Ponceau 4R under solar light. Applied Physics A, 126, 620. https://doi.org/10.1007/s00339-020-03766-1

    Article  CAS  Google Scholar 

  • Rekhila, G., & Trari, M. (2021). The photo-electrochemical properties of nano-sized ZnO. Application for the oxidation of dyes under sunlight. Reaction Kinetics, Mechanisms and Catalysis, 133, 501–516. https://doi.org/10.1007/s11144-021-01985-y

    Article  CAS  Google Scholar 

  • Sarrai, A., Hanini, S., Kasbadji, N., Merzouk, A., Tassalit, D., Szabó, T., Hernádi, K., & Nagy, L. (2016). Using central composite experimental design to optimize the degradation of tylosin from aqueous solution by photo-Fenton reaction. Materials, 9, 428–439.

    Article  Google Scholar 

  • Shen, M., Song, B., Zhu, Y., Zeng, G., Zhang, Y., Yang, Y. et al (2020). Chemosphere Removal of microplastics via drinking water treatment : Current knowledge and future directions. Chemosphere 251, 126612. https://doi.org/10.1016/j.chemosphere.2020.126612

  • Somaia, G. M., Sahar, M. A., Abd, G. E., Ayman, H. K. (2020). Porous activated carbon from lignocellulosic agricultural waste for the removal of acetampirid pesticide from aqueous solutions. Molecules 25, 2339. https://doi.org/10.3390/molecules25102339

  • Su, F., Lu, C., & Hu, S. (2010). Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl- oxidized carbon nanotubes. Colloids and Surface A, 353, 83–91.

    Article  CAS  Google Scholar 

  • Tassalit, D., Chekir, N., Benhabiles, O., Mouzaoui, O., Mahidine, S., Merzouk, N. K., et al. (2016a). Effect and interaction study of acetamiprid photodegradation using experimental design. Water Science and Technology, 74(8), 1953–1963. https://doi.org/10.2166/wst.2016.382

    Article  CAS  Google Scholar 

  • Tassalit, D., Lebouachera, S., Dechir, S., Chekir, N., Benhabiles, O., & Bentahar, F. (2016b). Comparison between TiO 2 and ZnO photocatalytic efficiency for the degradation of tartrazine contaminant in water. International Journal of Environmental Science, 1, 357–364.

    Google Scholar 

  • Zhu, Z., Chen, Z., Luo, X., Zhang, W., & Meng, S. (2020). Gravity-driven biomimetic membrane (GDBM): An ecological water treatment technology for water purification in the open natural water system. Chemical Engineering Journal, 399, 125650

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rekhila.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahraoui, N., Tassalit, D., Rekhila, G. et al. Laboratory Studies on the Adsorption of Acetamiprid to Activated Carbon from Pomegranate Waste. Water Air Soil Pollut 233, 290 (2022). https://doi.org/10.1007/s11270-022-05724-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05724-4

Keywords

Navigation