Skip to main content
Log in

Herding Oil Slicks with Fatty Alcohol and Carbonaceous Particles

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Oil slicks occurring during petroleum transportation or production are major sources of surface water pollution, and spread over large areas. Herders are interfacially active species that reduce the spread of oil slicks on water surfaces, facilitating slick recovery. Here, octanol (a readily biodegradable fatty alcohol) is used as a herder to facilitate the recovery of diluted bitumen and conventional crude oil spilled onto the surface of fresh and synthetic marine water. While octanol promptly decreases the area of simulated oil slicks in Petri dishes, over time it partitions into the oil phase and lowers its interfacial tension. As a result, low-viscosity hydrocarbons (toluene and conventional crude oil) re-spread. This study uses charcoal to suppress re-spreading and facilitate the mechanical recovery of oil slicks. Charcoal partitions into the crude oil phase and does not stabilize crude oil in water emulsions upon mixing, as demonstrated using optical microscopy. This ensures that charcoal particles are not lost to the water phase and do not promote hydrocarbon dispersion. Charcoal prevents herded slicks from re-expanding by rigidifying the crude oil–water interface (demonstrated using a Langmuir trough) and potentially due to the affinity of crude oil for charcoal. Therefore, charcoal facilitates the physical removal of crude oil slicks after herding, as qualitatively assessed by retrieving them from Petri dishes with the aid of a spatula. While charcoal also facilitates the recovery of herded low-viscosity conventional crude oil, it has only a marginal effect on the recovery of herded bitumen, which has high viscosity.

Graphical abstract

Highlights

• Oil slicks are major sources of surface water pollution.

• Herders such as octanol reduce the spread of oil slicks on water surfaces.

• Charcoal and octanol facilitate the recovery of low-viscosity hydrocarbon slicks.

• Charcoal and octanol facilitate the recovery of low-viscosity hydrocarbon slicks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data are made available upon reasonable request.

References

  • Annamalai, P., & Sureshan, K. M. (2012). A mannitol based phase selective supergelator offers a simple, viable and greener method to combat marine oil spills. Chemical Communications, 48(43), 5250–5252.

    Article  CAS  Google Scholar 

  • Bayat, A., Agham, S. F., Moheb, A., & Nezhaad, G. R. V. (2005). Oil spill cleanup from sea water by sorbent materials. Chemical Engineering & Technology: Industrial Chemistry Plant Equipment Process Engineering Biotechnology, 28(12), 1525–1528.

    Article  CAS  Google Scholar 

  • Berman, D., & Shevchenko, E. (2020). Design of functional composite and all-inorganic nanostructured materials via infiltration of polymer templates with inorganic precursors. Journal of Materials Chemistry C, 8(31), 10604–10627.

    Article  CAS  Google Scholar 

  • Bhardwaj, V., & Ballabh, A. (2021). A series of multifunctional pivalamide based low molecular mass gelators (LMOGs) with potential applications in oil-spill remediation and toxic dye removal. Colloids and Surfaces A, 632, 127813.

  • Bragg, J. R., Prince, R. C., Harner, E. J., & Atlas, R. M. (1994). Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature, 368(6470), 413–418.

    Article  CAS  Google Scholar 

  • Brown, C., Challenger, G., Etkin, D., Fingas, M., Hollebone, B., Kirby, M., Lamarche, L., Law, R., Mauseth, G., Michel, J., Nichols, W., Owens, E., Purnell, K., Quek, Q., Shigenaka, G., Simecek-Beatty, D., & Yender, R. (2011). Oil Spill Science and Technology. United States, Gulf Professional Publishing (Elsevier).

    Google Scholar 

  • Buist, I., Nedwed, T., & Mullin, J. (2008). Herding agents thicken oil spills in drift ice to facilitate in situ burning: a new trick for an old dog. International Oil Spill Conference (American Petroleum Institute), 1, 673–679.

  • Buist, I., Potter, S., & Sørstrøm, S. E. (2010). Barents sea field test of herder to thicken oil for in situ burning in drift ice. Thirty-third AMOP Technical Seminar on Environmental Contamination and Response, Ottava (ON, Canada), Environment Canada, 725–742.

  • Buist, I., Potter, S., Nedwed, T., & Mullin, J. (2011). Herding surfactants to contract and thicken oil spills in pack ice for in situ burning. Cold Regions Science and Technology, 67(1–2), 3–23.

    Article  Google Scholar 

  • Bullock, R. J., Perkins, R. A., & Aggarwal, S. (2019). In-situ burning with chemical herders for Arctic oil spill response: Meta-analysis and review. Science of the Total Environment, 675, 705–716.

    Article  CAS  Google Scholar 

  • Chandra, M. S., Xu, Z., & Masliyah, J. H. (2008). Interfacial films adsorbed from bitumen in toluene solution at a toluene− water interface: A Langmuir and Langmuir− Blodgett film approach." Energy & Fuels, 22(3), 1784–1791.

    Article  CAS  Google Scholar 

  • Chebil, S., Chaala, A., & Roy, C. (2000). Use of softwood bark charcoal as a modifier for road bitumen. Fuel, 79(6), 671–683.

    Article  CAS  Google Scholar 

  • Chen, J., Min, F., Liu, L., Peng, C., & Lu, F. (2016). Hydrophobic aggregation of fine particles in high muddied coal slurry water. Water Science and Technology, 73(3), 501–510.

    Article  Google Scholar 

  • Cherukupally, P., Sun, W., Williams, D. R., Ozin, G. A., & Bilton, A. M. (2021). Wax-wetting sponges for oil droplets recovery from frigid waters. Science Advances, 7(11), eabc7926.

    Article  CAS  Google Scholar 

  • Clark, R. M., Vicory, A. H., & Goodrich, J. A. (1990). The Ohio River oil spill: A case study. Journal-American Water Works Association, 82(3), 39–44.

    Article  CAS  Google Scholar 

  • de Oliveira Lira, A. L., Craveiro, N., da Silva, F. F., & Filho, J. S. R. (2021). Effects of contact with crude oil and its ingestion by the symbiotic polychaete Branchiosyllis living in sponges (Cinachyrella sp.) following the 2019 oil spill on the tropical coast of Brazil. Science of The Total Environment, 801, 149655.

    Article  CAS  Google Scholar 

  • Debruyn, A. M., Wernick, B. G., Stefura, C., McDonald, B. G., Rudolph, B. L., Patterson, L., & Chapman, P. M. (2007). In situ experimental assessment of lake whitefish development following a freshwater oil spill. Environmental Science & Technology, 41(20), 6983–6989.

    Article  CAS  Google Scholar 

  • Dey, S. (2012). Enhancement in hydrophobicity of low rank coal by surfactants—A critical overview. Fuel Processing Technology, 94(1), 151–158.

    Article  CAS  Google Scholar 

  • Doshi, B., Sillanpää, M., & Kalliola, S. (2018). A review of bio-based materials for oil spill treatment. Water Research, 135, 262–277.

    Article  CAS  Google Scholar 

  • Fay, J. A. (1969). The spread of oil slicks on a calm sea. In D. P. Hoult (Ed.), Oil on the Sea. Ocean Technology. Boston, MA: Springer. https://doi.org/10.1007/978-1-4684-9019-0_5

  • Fingas, M. (2013). The basics of oil spill cleanup. CRC Press.

    Google Scholar 

  • Fritt-Rasmussen, J., Wegeberg, S., & Gustavson, K. (2015). Review on burn residues from in situ burning of oil spills in relation to Arctic waters. Water, Air, & Soil Pollution, 226(10), 329.

    Article  CAS  Google Scholar 

  • Green, S. J., Demes, K., Arbeider, M., Palen, W. J., Salomon, A. K., Sisk, T. D., Webster, M., & Ryan, M. E. (2017). Oil sands and the marine environment: Current knowledge and future challenges. Frontiers in Ecology and the Environment, 15(2), 74–83.

    Article  Google Scholar 

  • Gupta, D., Sarker, B., Thadikaran, K., John, V., Maldarelli, C., & John, G. (2015). Sacrificial amphiphiles: Eco-friendly chemical herders as oil spill mitigation chemicals. Science Advances, 1(5), 1400265.

    Article  CAS  Google Scholar 

  • Gurumoorthi, K., Suneel, V., Rao, V. T., Thomas, A. P., & Alex, M. J. (2021). Fate of MV Wakashio oil spill off Mauritius coast through modelling and remote sensing observations. Marine Pollution Bulletin, 172, 112892.

    Article  CAS  Google Scholar 

  • Hoult, D. P. (1972). Oil spreading on the sea. Annual Review of Fluid Mechanics, 4(1), 341–368.

    Article  CAS  Google Scholar 

  • Hounjet, L. J., Stoyanov, S. R., & Chao, D. (2018). Distributions of diluted bitumen and conventional crude oil in a range of water types. Chemosphere, 211, 1212–1218.

    Article  CAS  Google Scholar 

  • Ivshina, I. B., Kuyukina, M. S., Krivoruchko, A. V., Elkin, A. A., Makarov, S. O., Cunningham, C. J., Peshkur, T. A., Atlas, R. M., & Philp, J. C. (2015). Oil spill problems and sustainable response strategies through new technologies. Environmental Science: Processes & Impacts, 17(7), 1201–1219.

    CAS  Google Scholar 

  • Jarman, S. (2018). Oleo sponge’ mops up ocean oil spills cleanly. Physical World, 31(9), 5.

    Article  Google Scholar 

  • John, V., Arnosti, C., Field, J., Kujawinski, E., & McCormick, A. (2016). The role of dispersants in oil spill remediation: Fundamental concepts, rationale for use, fate, and transport issues. Oceanography, 29(3), 108–117.

    Article  Google Scholar 

  • Karakasi, O. K., & Moutsatsou, A. (2010). Surface modification of high calcium fly ash for its application in oil spill clean up. Fuel, 89(12), 3966–3970.

    Article  CAS  Google Scholar 

  • Khandaker, S., Toyohara, Y., Kamida, S., & Kuba, T. (2018). Adsorptive removal of cesium from aqueous solution using oxidized bamboo charcoal. Water Resources and Industry, 19, 35–46.

    Article  Google Scholar 

  • Khristov, K., Taylor, S. D., Czarnecki, J., & Masliyah, J. (2000). Thin liquid film technique—application to water–oil–water bitumen emulsion films. Colloids and Surfaces A, 174(1–2), 183–196.

    Article  CAS  Google Scholar 

  • Kolokoussis, P., & Karathanassi, V. (2018). Oil spill detection and mapping using Sentinel 2 imagery. Journal of Marine Science and Engineering, 6(1), 4.

    Article  Google Scholar 

  • Krall, A. H., Sengers, J. V., & Kestin, J. (1992). Viscosity of liquid toluene at temperatures from 25 to 150. Degree. C and at pressures up to 30 MPa. Journal of Chemical and Engineering Data, 37(3), 349–355.

    Article  CAS  Google Scholar 

  • Kujawinski, E. B., Soule, M. C. K., Valentine, D. L., Boysen, A. K., Longnecker, K., & Redmond, M. C. (2011). Fate of dispersants associated with the Deepwater Horizon oil spill. Environmental Science & Technology, 45(4), 1298–1306.

    Article  CAS  Google Scholar 

  • Lee, J. G., Larive, L. L., Valsaraj, K. T., & Bharti, B. (2018). Binding of lignin nanoparticles at oil–water interfaces: An ecofriendly alternative to oil spill recovery. ACS Applied Materials & Interfaces, 10(49), 43282–43289.

    Article  CAS  Google Scholar 

  • Lee, K., Boufadel, M., Chen, B., Foght, J., Hodson, P., Swanson, S., & Venosa, A. (2015). Expert panel report on the behaviour and environmental impacts of crude oil released into aqueous environments. Ottawa, ON: Royal Society of Canada.

  • Li, P., Chen, B., Zhang, B., Jing, L., & Zheng, J. (2012). A multiple-stage simulation-based mixed integer nonlinear programming approach for supporting offshore oil spill recovery with weathering processess. The Journal of Ocean Technology, 7(4), 87–105.

    CAS  Google Scholar 

  • Liwei, Y., Li, G., Ye, Z., Tian, F., & Zhang, S. (2014). Dual-responsive two-component supramolecular gels for self-healing materials and oil spill recovery. Chemical Communications, 50(94), 14839–14842.

    Article  Google Scholar 

  • Lixin, T., Duan, W., Xiao, W., Fu, C., Wang, A., & Zheng, Y. (2018). Calotropis gigantea fiber derived carbon fiber enables fast and efficient absorption of oils and organic solvents. Separation and Purification Technology, 192, 30–35.

    Article  CAS  Google Scholar 

  • Magris, R. A., & Giarrizzo, T. (2020). Mysterious oil spill in the Atlantic Ocean threatens marine biodiversity and local people in Brazil. Marine Pollution Bulletin, 153, 110961.

    Article  CAS  Google Scholar 

  • Marangoni, C. (1869). Sull’espansione delle goccie d’un liquido galleggianti sulla superficie di altro liquido. Pavia (Italy), Fratelli Fusi.

  • Motta, F. L., Stoyanov, S. R., & Soares, J. B. (2018). Application of solidifiers for oil spill containment: A review. Chemosphere, 194, 837–846.

    Article  CAS  Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine. (2016). Spills of diluted bitumen from pipelines: A comparative study of environmental fate, effects, and response. Washington, DC: The National Academies Press. https://doi.org/10.17226/21834

  • NOAA, Office of Research and Restoration. (2022). Largest oil spills affecting U.S. waters since 1969. from https://response.restoration.noaa.gov/oil-and-chemicalspills/oil-spills/largest-oil-spills-affecting-us-waters-1969.html

  • Nosoko, T., & Mori, Y. H. (1990). An improved method for determining equilibrium spreading coefficient of oils on water. Journal of Colloid and Interface Science, 140(2), 326–334.

    Article  CAS  Google Scholar 

  • Ohsedo, Y. (2016). Low-molecular weight organogelators as functional materials for oil spill remediation. Polymers for Advanced Technologies, 27(6), 704–711.

    Article  CAS  Google Scholar 

  • Pehlivan, E., & Kahraman, H. (2011). Sorption equilibrium of Cr (VI) ions on oak wood charcoal (Carbo Ligni) and charcoal ash as low-cost adsorbents. Fuel Processing Technology, 92(1), 65–70.

    Article  CAS  Google Scholar 

  • Pensini, E., Yip, C. M., O’Carroll, D. M., & Sleep, B. E. (2012). Effect of water chemistry and aging on iron- mica interaction forces: Implications for iron particle transport. Langmuir, 28(28), 10453–10463.

    Article  CAS  Google Scholar 

  • Pensini, E., Tchoukov, P., Yang, F., & Xu, Z. (2018). Effect of humic acids on bitumen films at the oil-water interface and on emulsion stability: Potential implications for groundwater remediation. Colloids and Surfaces A, 544, 53–59.

    Article  CAS  Google Scholar 

  • Pete, A. J., Bharti, B., & Benton, M. G. (2021). Nano-enhanced bioremediation for oil spills: A review. ACS ES&T Engineering, 1(6), 928–946.

    Article  CAS  Google Scholar 

  • Prasad, S. J., Balakrishnan Nair, T. M., Rahaman, H., Shenoi, S. S. C., & Vijayalakshmi, T. (2018). An assessment on oil spill trajectory prediction: Case study on oil spill off Ennore Port. Journal of Earth System Science, 127(8), 111.

    Article  Google Scholar 

  • Radović, J. R., Oldenburg, T. B., & Larter, S. R. (2018). Environmental assessment of spills related to oil exploitation in Canada’s oil sands region. In S. A. Stout, & Z. Wang (Eds.), Oil spill environmental forensics case studies (pp. 401–417). Butterworth-Heinemann.

  • Razavi, S., Cao, K. D., Lin, B., Lee, K. Y. C., Tu, R. S., & Kretzschmar, I. (2015). Collapse of particle-laden interfaces under compression: Buckling vs particle expulsion. Langmuir, 31(28), 7764–7775.

    Article  CAS  Google Scholar 

  • Ren, S., Liu, X., Zhang, Y., Lin, P., Apostolidis, P., Erkens, S., Li, M., & Xu, J. (2021). Multi-scale characterization of lignin modified bitumen using experimental and molecular dynamics simulation methods. Construction and Building Materials, 287, 123058.

    Article  Google Scholar 

  • Ron, E., & Rosenberg, E. (2014). Enhanced bioremediation of oil spills in the sea. Current Opinion in Biotechnology, 27, 191–194.

    Article  CAS  Google Scholar 

  • Safieh, P., Pensini, E., Marangoni, A., Lamont, K., Ghazani, S. M., Callaghan-Patrachar, N., Strüder-Kypke, M., Peyronel, F., Chen, J., & Rodriguez, B. M. (2019). Natural emulsion gels and lecithin-based sorbents: A potential treatment method for organic spills on surface waters. Colloids and Surfaces A, 574, 245–259.

    Article  CAS  Google Scholar 

  • Safieh, P., Walls, D. J., Frostad, J., Marangoni, A. G., Ghazani, S. M., & Pensini, E. (2020). Effect of toluene and hexane sorption on the rheology and interfacial properties of lecithin-based emulsion gels. Langmuir, 36(6), 1484–1495.

    Article  CAS  Google Scholar 

  • Sakti, S. C. W., Indrasari, N., Wijaya, R. A., Fahmi, M. Z., Widati, A. A., Lee, H. V., Fujioka, T., Nuryono, & Chen, C. -H. (2022) Diatomaceous earth incorporated floating magnetic beads for oil removal on water. Environmental Technology & Innovation, 25, 102120. https://doi.org/10.1016/j.eti.2021.102120

  • Solovyev, A., Zhang, L. Y., Xu, Z., & Masliyah, J. H. (2006). Langmuir films of bitumen at oil/water interfaces. Energy & Fuels, 20(4), 1572–1578.

    Article  CAS  Google Scholar 

  • Stachurski, J., Fijal, T., & Michalek, M. (1980). Aliphatic alcohol flotation of surface oxidized coal. Archiwum Gornictwa, 25(2), 269–281.

  • Sun, S., Lu, Y., Liu, Y., Wang, M., & Hu, C. (2018). Tracking an oil tanker collision and spilled oils in the East China Sea using multisensor day and night satellite imagery. Geophysical Research Letters, 45(7), 3212–3220.

    Article  Google Scholar 

  • Surkes, S. (2021). Tar still washing up onto Israel’s beaches six months after oil spill. The Times of Israel, https://www.timesofisrael.com/tar-still-washing-up-onto-israels-beaches-six-months-after-oil-spill/

  • Tchoukov, P., Yang, F., Xu, Z., Dabros, T., Czarnecki, J., & Sjoblom, J. (2014). Role of asphaltenes in stabilizing thin liquid emulsion films. Langmuir, 30(11), 3024–3033.

    Article  CAS  Google Scholar 

  • Tomco, P. L., Duddleston, K. N., Driskill, A., Hatton, J. J., Grond, K., Wrenn, T., Tarr, M. A., Podgorski, D. C., Zito, P. (2022). Dissolved organic matter production from herder application and in-situ burning of crude oil at high latitudes: Bioavailable molecular composition patterns and microbial community diversity effects. Journal of Hazardous Materials, 424(Part C), 127598. https://doi.org/10.1016/j.jhazmat.2021.127598

  • Wang, Z., Fingas, M., Lambert, P., Zeng, G., Yang, C., & Hollebone, B. (2004). Characterization and identification of the Detroit River mystery oil spill (2002). Journal of Chromatography A, 1038(1–2), 201–214.

    Article  CAS  Google Scholar 

  • Wang, H., Li, N., Jia, S., Bian, J., Hao, X., & Peng, F. (2021). Lignin/Xylan‐based phase selective powder gelator for eco‐friendly oil spill treatment. Advanced Sustainable Systems, 5(12), 2100229.

  • Ward, C. P., Armstrong, C. J., Conmy, R. N., French-McCay, D. P., & Reddy, C. M. (2018). Photochemical oxidation of oil reduced the effectiveness of aerial dispersants applied in response to the deepwater horizon spill. Environmental Science & Technology Letters, 5(5), 226–231.

    Article  CAS  Google Scholar 

  • Xin, Q., Hounjet, L. J., & Hartwell, A. (2022). Spill behaviours of pipeline-transportable processed bitumen products in fresh water. Fuel, 309, 122040.

    Article  CAS  Google Scholar 

  • Zhang, T., Kong, L., Dai, Y., Yue, X., Rong, J., Qiu, F., & Pan, J. (2017). Enhanced oils and organic solvents absorption by polyurethane foams composites modified with MnO2 nanowires. Chemical Engineering Journal, 309, 7–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Lindsay Hounjet for the valuable comments.

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2022.

Funding

The authors were supported by the Natural Sciences and Engineering Research Council of Canada (provided through an NSERC Discovery grant, awarded to Dr. Erica Pensini, RGPIN-2018–04636). The authors also were financially supported by the Program of Energy Research and Development of the Government of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica Pensini.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5174 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Earnden, L., Foster, S.E., Tchoukov, P. et al. Herding Oil Slicks with Fatty Alcohol and Carbonaceous Particles. Water Air Soil Pollut 233, 270 (2022). https://doi.org/10.1007/s11270-022-05706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05706-6

Keywords

Navigation