Skip to main content
Log in

Radiological Assessment and Statistical Approaches of Natural Radionuclides in Soil Samples Related to Phosphate Ore Activities in the site of Dagbati, Southern Region of Togo

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Distribution studies of 238U, 226Ra, 232Th, and 40 K in soil, statistical analysis of activity concentrations, and radiological safety assessment were carried out in the phosphate ore site of Dagbati, southern region of Togo. The measurements were done using high purity germanium (HPGe) detector gamma‑ray spectrometer. High values of activity concentrations of 238U and 226Ra measured were partially attributed to the nature of rocks and the geological structure of the studied area. Twenty-two out of 30 (73.33%) of soil samples presented values above the recommended limit for gamma-ray absorbed dose rate. Although the annual effective dose equivalent mean value of 0.68 mSv year−1 (0.54 for indoor and 0.14 for outdoor) was below the recommended limit, more than 73% of soil samples were above. Similarly, external and internal hazard’s indices, gamma level index, and excess lifetime cancer risk vary from 0.06 to 1.69, 0.09 to 3.20, 0.15 to 4.19, and 0.00004 to 0.00123, respectively, with more than 73% soil samples having values above the recommended limit. These are indications that long-term exposure to natural radiation may lead to cancer risk. However, considering the level of uranium in soil samples, the mass exhalation rate of radon was investigated and the mean value of 1450 mBq kg−1 h−1 obtained is lower than the safe value of 57,600 mBq kg−1 h−1. Therefore, using phosphate mining soil as building material is safe in terms of radon exposition but might lead to radiation exposure and further an increase of cancer incidence for the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analysed during the current study may be made available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Abbreviations

Raeq :

Radium equivalent (Bq kg−1)

A Ra :

Activity concentration of 226Ra (Bq kg1)

A Th :

Activity concentration of 232Th (Bq kg1)

AK :

Activity concentration of 40 K (Bq kg−1)

I γ :

External gamma index

ELCR:

Excess lifetime cancer risk

RF:

Risk factor of 0.05 Sv1 (used by ICRP 60)

EF:

Coefficient of radon emanation from soil

α :

Statistically significant level

\(\dot{D}\)  :

Gamma-ray absorbed dose rate (nGy h−1)

IAEDE:

Indoor annual effective dose equivalent (mSv year−1)

OAEDE:

Outdoor annual effective dose equivalent (mSv year−1)

H int :

Internal exposure risk

Hext :

External exposure risk

DL:

Duration of life (estimated at 70 years)

ME(Rn):

Mass exhalation rate of radon (mBq kg−1 h−1)

λRn :

Decay constant of 222Rn (7.56 × 10−3 decay h−1)

SD:

Standard deviation

References

  • Abbas, Y. M., Hegazy, T. M., Nassif, M. S., Shoeib, M. Y., Hegazy, T. M., Nassif, M. S., & Shoeib, M. Y. (2020). Measurement of Ra concentration and radon exhalation rate in rock samples from Al-Qusair area using CR-39. Journal of Radiation Research and Applied Sciences, 13, 102–110. https://doi.org/10.1080/16878507.2019.1706264

    Article  CAS  Google Scholar 

  • Abdi, M. R., Hassanzadeh, S., Kamali, M., & Raji, H. R. (2009). 238U, 232Th, 40K and 137Cs activity concentrations along the southern coast of the Caspian Sea,Iran. Marine Pollution Bulletin, 58, 658–662. https://doi.org/10.1016/j.marpolbul.2009.01.009

    Article  CAS  Google Scholar 

  • Almayahi, B. A., Tajuddin, A. A., & Jaafar, M. S. (2012). Effect of the natural radioactivity concentrations and 226Ra/238U disequilibrium on cancer diseases in Penang, Malaysia. Radiation Physics and Chemistry, 81, 1547–1558. https://doi.org/10.1016/j.radphyschem.2012.03.018

    Article  CAS  Google Scholar 

  • Al-Trabulsy, H. A., Khater, A. E. M., & Habbani, F. I. (2011). Radioactivity levels and radiological hazard indices at the Saudi coastline of the Gulf of Aqaba. Radiation Physics and Chemistry, 80, 343–348. https://doi.org/10.1016/j.radphyschem.2010.09.002

    Article  CAS  Google Scholar 

  • Beogo, E., Cisse, O. I., Kanazoe, A. R., Maiga, A. R., & Zougmore, F. (2019). Preliminary study of gamma dose rate distribution in the anomaly of the west-central region of Burkina Faso: Use of the portable gamma detector. Internatonal Journal for Research in Applied Science and Engineering Technology, 7(2), 1101–1107.

    Article  Google Scholar 

  • Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Physics, 48, 87–95. https://doi.org/10.1097/00004032-198501000-00007

    Article  CAS  Google Scholar 

  • Bernier, M. O., Doody, M. M., Van Dyke, M. E., Villoing, D., Alexander, B. H., Linet, M. S., & Kitahara, C. M. (2018). Work history and radioprotection practices in relation to cancer incidence and mortality in US radiologic technologists performing nuclear medicine procedures. Occupational and Environmental Medicine, 75, 553–561. https://doi.org/10.1136/oemed-2017-104559

    Article  Google Scholar 

  • Canet, R., Pomares, F., Cabot, B., Chaves, C., Ferrer, E., Ribó, M., & Albiach, M. R. (2008). Composting of olive mill pomace and other residues from rural southeastern Spain. Waste Management, 28, 2585–2592.

    Article  CAS  Google Scholar 

  • Chang, D.S., Lasley, F.D., Das, I.J., Mendonca, M.S., Dynlacht, J.R., (2021). Cancer biology, basic radiotherapy physics and biology. Springer, p. 207–216.

  • Chen, M., & Graedel, T. E. (2015). The potential for mining trace elements from phosphate rock. Journal of Cleaner Production, 91, 337–346.

    Article  CAS  Google Scholar 

  • Cieślik, B. M., Namieśnik, J., & Konieczka, P. (2015). Review of sewage sludge management: Standards, regulations and analytical methods. Journal of Cleaner Production, 90, 1–15.

    Article  Google Scholar 

  • Darwish, D. A. E., Abul-Nasr, K. T. M., & El-Khayatt, A. M. (2015). The assessment of natural radioactivity and its associated radiological hazards and dose parameters in granite samples from South Sinai. Egypt. Journal of Radiation Research and Applied Sciences, 8, 17–25.

    Article  CAS  Google Scholar 

  • Datta, N., Chakraborty, S., Basu, M., & Ghosh, M. K. (2021). Tumor suppressors having oncogenic functions: The double agents. Cells, 10(1), 46.

    Article  CAS  Google Scholar 

  • El Zrelli, R., Rabaoui, L., van Beek, P., Castet, S., Souhaut, M., Grégoire, M., & Courjault-Radé, P. (2019). Natural radioactivity and radiation hazard assessment of industrial wastes from the coastal phosphate treatment plants of Gabes (Tunisia, Southern Mediterranean Sea). Marine Pollution Bulletin, 146, 454–461. https://doi.org/10.1016/j.marpolbul.2019.06.075

    Article  CAS  Google Scholar 

  • Forkapic, S., Vasin, J., Bikit, I., et al. (2017). Correlations between soil characteristics and radioactivity content of Vojvodina soil. Journal of Environmental Radioactivity, 166, 104–111. https://doi.org/10.1016/j.jenvrad.2016.04.003

    Article  CAS  Google Scholar 

  • Gaafar, I., Hanfia, M., El-Ahllb Lina, S., & Zeidana, I. (2021). Assessment of radiation hazards from phosphate rocks, Sibaiya area, central eastern desert. Egypt. Applied Radiation and Isotopes, 173, 109734.

    Article  CAS  Google Scholar 

  • Gbadamosi, M. R., Banjoko, O. O., Abudu, K. A., Ogunbanjo, O. O., & Ogunneye, A. L. (2017). Radiometric evaluation of excessive lifetime cancer probability due to naturally occurring radionuclides in wastes dumpsites soils in Agbara, Southwest, Nigeria. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24, 315–324.

    Article  Google Scholar 

  • Glavič-Cindro, D., Korun, M., Nečemer, M., et al. (2016). Evaluation of comparison and proficiency test results of gamma ray spectrometry at Jožef Stefan Institute from 1986 to 2014. Applied Radiation and Isotopes, 109, 54–60. https://doi.org/10.1016/j.apradiso.2015.12.025

    Article  CAS  Google Scholar 

  • Glavič-Cindro, D., Hazou, E., Korun, M., Krištof, R., Osterman, P., Petrovič, T., Vodenik, B., & Zorko, B. (2020). Measurement uncertainty arising from sampling of environmental samples. Applied Radiation and Isotopes, 156. https://doi.org/10.1016/j.apradiso.2019.108978

  • Gnandi, K., Tozo, K., Edorh, A. P., Abi, H., Agbeko, K., Amouzouvi, K., Gnon, B., Gado, T., Kili, K., Bouchet, P., & Akpagana, K. (2008). Bioaccumulation de certains elements métalliques dans les produits maraîchers cultivés sur les sols urbains le long de l’autoroute Lomé-Aného, Sud Togo. Acta Botanica Gallica, 115(3), 415–426.

    Article  Google Scholar 

  • Guembou Shouop, C. J., Ndontchueng Moyo, M., Chene, G., Nguelem Mekontso, E. J., Motapon, O., Kayo, S. A., & Strivay, D. (2017). Assessment of natural radioactivity and associated radiation hazards in sand building material used in Douala Littoral-Region of Cameroon, using gamma spectrometry. Environment and Earth Science, 76. https://doi.org/10.1007/s12665-017-6474-3

  • Hazou, E., & Patchali, T. E. (2021). Assessment of radiological hazards in the phosphate mining area of Kpogame, Togo. Case Studies in Chemical and Environmental Engineering, 3, 100077. https://doi.org/10.1016/j.cscee.2020.100077

    Article  CAS  Google Scholar 

  • Hazou, E., Guembou Shouop, C. J., Nguelem Mekongtso, E. J., Ndontchueng Moyo, M., Beyala Ateba, J. F., & Tchakpele, P. K. (2019). Preliminary assessment of natural radioactivity and associated radiation hazards in a phosphate mining site in southern area of Togo. Radiation Detection Technology and Methods, 3, 7–10. https://doi.org/10.1007/s41605-018-0091-x

  • Hazou, E., Zorko, B., Dzagli, M. M., Haliba, E. M., Guembou Shouop, C. J., Ndontchueng, M. M., & Tchakpele, P. K. (2021a). Transfer from soil to grass and statistical analysis of naturally occurring radionuclides in soil from phosphate mining and processing sites in Maritime Region of Togo. Environmental Earth Sciences, 80, 626. https://doi.org/10.1007/s12665-021-09931-w

  • Hazou, E., Zorko, B., Nečemer, Haliba E. M., Aziable E., Guembou Shouop C. J., & Tchakpele, K. P. (2021b). Heavy metal pollution assessment using energy-dispersive x-ray fluorescence and multivariate statistical approach of soil from phosphate ore sites, Southern Region of Togo. Water, Air, & Soil Pollution, 232, 489. https://doi.org/10.1007/s11270-021-05439-y

  • Hazou, E., Dzagli, M. M., Ndontchueng, M. M., Konzou E., Patchali, T. E., & Zorko, B. (2022). Assessment of radiation hazards related to phosphate ore processing around Kpémé plant in Togo: Multivariate statistical approach. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-022-04054-6

  • IAEA. (2010). INTERNATIONAL ATOMIC ENERGY AGENCY, Radioelements Mapping, Nuclear Energy Series, Vienna. https://www.iaea.org/publications/7649/radioelement-mapping

  • ICRP (2008). Radiation dose to patients from radiopharmaceuticals e addendum 3 to ICRP Publication 53. ICRP Publication 106 Annals of the ICRP, 38, 1–2.

  • Kola, P., Metowogo, K., Kantati, Y. T., Lawson-Evi, P., Kpemissi, M., El-Hallouty, S. M., Mouzou, A. P., Eklu-Gadegbeku, K., & Aklikokou, K. A. (2020). Ethnopharmacological survey on medicinal plants used by traditional healers in Central and Kara Regions of Togo for antitumor and chronic wound healing effects. Hindawi, Evidence-Based Complementary and Alternative Medicine, 2020, 6940132. https://doi.org/10.1155/2020/6940132

  • Li, S., Wang, L., Peng, J., Zhai, M., & Shi, W. (2019). Efficient thorium (IV) removal by two-dimensional Ti2CTx MXene from aqueous solution. Chemical Engineering Journal, 15(366), 192–199.

    Article  Google Scholar 

  • Ndontchueng, M. M., Nguelem, E. J. M., Motapon, O., Njinga, R. L., Simo, A., Guembou, J. C. S., & Yimele, B. (2015). Radiological hazards in soil from the bauxite deposits sites in Dschang Region of Cameroon. British Journal of Applied Science & Technology, 5(4).

  • Nguelem, E. M., Ndontchueng, M. M., Montapon, O., Guembou Shouop, C. J., & Darko, E. O. (2017). Radiological monitoring and statistical approach of primordial and anthropogenic radionuclides in surface soil of Mami-water site in the Western Cameroon. Environment and Earth Science. https://doi.org/10.1007/s12665-017.6951-8

  • Nwaka B.U., Emelue H.U., Nwokocha C. (2001). Natural radiation levels and health hazard indices of soil in Owerri Nigeria. International Journal Of Engineering and Science, 3(12):5–9. ISSN (e) :2319–1813.

  • Papastefanou C (2001). Radiological impact from atmospheric releases of 238U and 226Ra from phosphate rock processing plants. Journal of Environmental Radioactivity, 54(1): 75–83, ISSN 0265–931X: https://doi.org/10.1016/S0265-931X(00)00167-3.

  • Pinto, P. V., Kumara, K. S., & Karunakara, N. (2019). Mass exhalation rates, emanation coefficients and enrichment pattern of radon, thoron in various grain size fractions of monazite rich beach placers. Radiation Measurementshttps://doi.org/10.1016/j.radmeas.2019.106220

  • Pourcelot L, Masson O, Beguin-Leprieur M, Boulet B, Cagnat X, De Vismes-Ott A, Habibi A, Jaegler H, Wampach C, Dias Varela D, Fleury S, Treille F, Hennequet P, Métivier JM, Cossonnet C, Raynal JC, Noack Y (2021). Using the activity of naturally occurring radionuclides to identify the contribution of the Al industry to the atmosphere and plants. Applied Geochemistry, 131, 105033, ISSN 0883–2927: https://doi.org/10.1016/j.apgeochem.2021.105033.

  • Qamouche, K., Chetaine, A., Elyahyaoui, A., Moussaif, A., Touzani, R., Benkdad, A., & Amsil, H. (2020). Materials Today : Proceedings Radiological characterization of phosphate rocks, phosphogypsum, phosphoric acid and phosphate fertilizers in Morocco : An assessment of the radiological hazard impact on the environment. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.04.703

    Article  Google Scholar 

  • Raghu, Y., Ravissankar, R., Chandrasekran, A. P., & Venkatraman, V. (2017). Assessment of natural radioactivity and radiological hazards in building materials used in the Tiruvannmalali District, Tamilnadu, India, using a statistical approach. Journal of Taibah University for Science, 11, 523–533. https://doi.org/10.1016/j.jtusci.2015.08.004

    Article  Google Scholar 

  • Raja, M., Dalila, T., & Ammar, B. B. (2014). Chemical and mineralogy characteristics of dust collected near the phosphate mining Basin of Gafsa (South-Western of Tunisia). Journal of Environmental & Analytical Toxicology, 4, 1–6.

    Article  Google Scholar 

  • Ravisankar, R., Vanasundari, K., Suganya, M., Raghu, Y., Rajalakshmi, A., Chandrasekaran, A., Sivakumar, S., Chandramohan, J., Vijayagopal, P., & Venkatraman, B. (2014). Multivariate statistical analysis of radiological data of building materials used in Tiruvan-namalai,Tamilnadu. Applied Radiation and Isotopes, 85, 114–127. https://doi.org/10.1016/j.apradiso.2013.12.005

    Article  CAS  Google Scholar 

  • Reisz, J. A., Bansal, N., Qian, J., Zhao, W., & Furdui, C. M. (2014). Effects of ionizing radiation on biological molecules-mechanisms of damage and emerging methods of detection. Antioxidants & Redox Signaling, 21(2), 260–292. https://doi.org/10.1089/ars.2013.5489

    Article  CAS  Google Scholar 

  • Reta, G., Dong, X., Li, Z., et al. (2018). Environmental impact of phosphate mining and beneficiation: Review. Int J Hydro., 2(4), 424–431. https://doi.org/10.15406/ijh.2018.02.00106

    Article  Google Scholar 

  • Richardson, H. E., Cordero, J. B., & Grifoni, D. (2020). Basic and translational models of cooperative oncogenesis. Multidisciplinary Digital Publishing Institute.

  • Sahu, S. K., Ajmal, P. Y., Bhangare, R. C., Tiwari, M., & Pandit, G. G. (2014). Natural radioactivity assessment of a phosphate fertilizer plant area. Journal of Radiation Research and Applied Science, 7, 123–128. https://doi.org/10.1016/j.jrras.2014.01.001

    Article  CAS  Google Scholar 

  • Shaw, P., Kumar, N., Mumtaz, S., et al. (2021). Evaluation of non-thermal effect of microwave radiation and its mode of action in bacterial cell inactivation. Scientific Reports, 11(1), 14003. https://doi.org/10.1038/s41598-021-93274-w

    Article  CAS  Google Scholar 

  • Solehah, A. R., Yasir, M. S., & Samat, S. B. (2016). Activity concentration, transfer factors and resultant radiological risk of 226Ra, 232Th, and 40K in soil and some vegetables consumed in Selangor, Malaysia. AIP Conference Proceedings. https://doi.org/10.1063/1.4966802

    Article  Google Scholar 

  • Tchangbedji, G., Djeteli, G., Kili, A., Savariault, M. J., & Lacoutl, J. (2003). Chimical and structural characterization of natural phosphate of Hahotoé (Togo). Bulletin of the Chemical Society of Ethiopia, 17(2), 1–8.

    Google Scholar 

  • Ukaogo, P. O., Ewuzie, U., & Onwuka, C. V. (2020). Environmental pollution: causes, effects, and the remedies. In Microorganisms for sustainable environment and health (Vol. 21, pp. 419–429). Elsevier.

  • UNSCEAR. (2000). United Nations Scientific Committee on the Effect of Atomic Radiation. Exposure from natural radiation sources. United Nations. https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf

  • UNSCEAR. (2008). Sources and effects of ionizing radiation - exposures of the public and workers from various sources of radiation - UNSCEAR 2008 report. United Nations Publication. https://www.unscear.org/unscear/en/publications/2008_1.html

  • Vidmar, T., Korun, M., & Vodenik, B. (2007). A method for calculation of true coincidence summing correction factors for extended sources. Applied Radiation and Isotopes, 65, 243–246. https://doi.org/10.1016/japradiso200607012

    Article  CAS  Google Scholar 

  • Wang, K., Lin, Z., & Zhang, R. (2016). Impact of phosphate mining and separation of mined materials on the hydrology and water environment of the Huangbai River basin. China Science of the Total Environment, 543, 347–356.

    Article  CAS  Google Scholar 

  • Yang, Y. X., Wu, X. M., Jiang, Z. Y., Wang, W. X., Lu, J. G., Lin, J., Wang, L. M., & Hsia, Y. F. (2005). Radioactivity concentrations in soils of the Xiazhuang granite area. Applied Radiation and Isotopes, 63, 255–259. https://doi.org/10.1016/j.apradiso.2005.02.011

    Article  CAS  Google Scholar 

  • Zeng, M., Chen, M., Huang, D., Lei, S., Zhang, X., Wang, L., & Cheng, Z. (2021). Engineered two-dimensional nanomaterials: An emerging paradigm for water purification and monitoring. Materials Horizons, 8, 758–802.

    Article  CAS  Google Scholar 

  • Zhang, J., Feng, L., Jian, Y., Luo, G., Wang, M., Hu, B., Liu, T., Li, J., Yuan, Y., & Wang, N. (2021). Interlayer spacing adjusted zirconium phosphate with 2D ion channels for highly efficient removal of uranium contamination in radioactive effluent. Chemical Engineering Journal, 1(429), 132265.

    Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the Director-General of the Jožef Stefan Institute (JSI) of Slovenia, Prof. Dr. Jadran Lenarčič for the laboratory support. The authors also appreciate the community of Dagbati for their great cooperation during sample collection period.

Funding

This research was funded by the International Atomic Energy Agency (IAEA) under Sandwich Training Educational Programme (STEP 2017); recipient: Mr. Eyakifama Hazou.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to achieve this manuscript.

Corresponding author

Correspondence to Eyakifama Hazou.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazou, E., Patchali, T.E., Konzou, E. et al. Radiological Assessment and Statistical Approaches of Natural Radionuclides in Soil Samples Related to Phosphate Ore Activities in the site of Dagbati, Southern Region of Togo. Water Air Soil Pollut 233, 237 (2022). https://doi.org/10.1007/s11270-022-05700-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05700-y

Keywords

Navigation