Skip to main content
Log in

Assessment of natural radioactivity levels and radiological hazard parameters of soils collected from Bulgaria–Turkey border region

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The activity concentrations of naturally occuring radionuclides (226Ra, 232Th and 40K) were measured in topsoil samples collected from Bulgaria to Turkey border region. Naturally occurring radionuclide measurements were performed using high-purity germanium detector. The activity concentration of 226Ra, 232Th and 40K in soil samples was found to vary from of 12.64 ± 0.48 to 43.00 ± 1.02 Bq kg−1 with an average 23.98 ± 1.33 Bq kg−1, 22.81 ± 0.75 to 71.96 ± 1.89 Bq kg−1 with an average 42.37 ± 1.14 Bq kg−1 and 418.82 ± 8.71 to 908.33 ± 12.84 Bq kg−1 with an average 616.79 ± 9.37 Bq kg−1, respectively. The spatial distribution maps of 226Ra, 232Th and 40K were obtained. The radiological health hazard parameters such as radium equivalent activity, absorbed dose rate, annual effective dose equivalent, excess lifetime cancer risk and external hazard index were estimated based on activity concentrations of naturally occurring radionuclides. Statistical analyses were used to exhibit the distributions of obtained radiological data and correlation between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig.7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No Data associated with the manuscript.

References

  1. UNSCEAR, United nations scientific committee on the effects of atomic radiation. Annex B. Exposures from natural radiation sources, New York (2000)

  2. R.C. Ramola, G.S. Gusain, M. Badoni, Y. Prasad, G. Prasad, T.V. Ramachandran, 226Ra, 232Th and 40K contents in soil samples from Garhwal Himalaya, India, and its radiological implications. J. Radiol. Prot. 28(3), 379 (2008)

    Article  Google Scholar 

  3. F.O. Ugbede, O.D. Osahon, A.F. Akpolile, Natural radioactivity levels of 238U, 232Th and 40K and radiological risk assessment in paddy soil of Ezillo rice fields in Ebonyi State, Nigeria. Environ. Forens. 1–16 (2021)

  4. A.F. Tawfic, H.M. Zakaly, H.A. Awad, H.R. Tantawy, A. Abbasi, N.S. Abed, M. Mostafa, Natural radioactivity levels and radiological implications in the high natural radiation area of Wadi El Reddah, Egypt. J. Radioanal. Nucl. Chem. 327(2), 643–652 (2021)

    Article  Google Scholar 

  5. K. Kapanadze, A. Magalashvili, P. Imnadze, Radiological hazards assessment due to natural radioactivity in soils from Imereti region (Georgia). Arab. J. Geosci. 14(12), 1–9 (2021)

    Article  Google Scholar 

  6. A. Al-Haydari, E.S. Al Sharabi, M.H. Al Buhairi, Determination of specific activity of 226Ra, 232Th and 40K for assessment of environmental hazards. Radiat. Prot. Dosim. 148(3), 329–336 (2012)

    Article  Google Scholar 

  7. B. Mason, C.B. Moore, Principles of Geochemistry, 4th edn. (Wiley, New York, 1982)

    Google Scholar 

  8. S. Singh, A. Rani, R.K. Mahajan, 226Ra, 232Th and 40K analysis in soil samples from some areas of Punjab and Himachal Pradesh, India using gamma ray spectrometry. Radiat. Meas. 39(4), 431–439 (2005)

    Article  Google Scholar 

  9. G. Yaprak, M. Aslani, External dose-rates for natural gamma emitters in soils from an agricultural land in West Anatolia. J. Radioanal. Nucl. Chem. 283(2), 279–287 (2010)

    Article  Google Scholar 

  10. S. Ziajahromi, M. Khanizadeh, F. Nejadkoorki, Using the RESRAD code to assess human exposure risk to 226Ra, 232Th, and 40K in soil. Hum. Ecol. Risk Assess. Int. J. 21(1), 250–264 (2015)

    Article  Google Scholar 

  11. B. Berov, N. Dobrev, I. Brouchev, T. Fukuzono, Landslides in Bulgaria. Landslides 38(4), 334–343 (2002)

    Article  Google Scholar 

  12. M. Coşkun, E. Steinnes, M.V. Frontasyeva, T.E. Sjobakk, S. Demkina, Heavy metal pollution of surface soil in the Thrace region, Turkey. Environ. Monit. Assess. 119(1), 545–556 (2006)

    Article  Google Scholar 

  13. M. Kamışoğlu, Determination of relationships between radon gas (222rn), earthquake and meteorological parameters with kriging and regression methods. J. Phys. Chem. Funct. Mater. 1(1), 36–44 (2018)

    Google Scholar 

  14. M.O. Isinkaye, Y. Ajiboye, Natural radioactivity in surface soil of urban settlements in Ekiti State, Nigeria: baseline mapping and the estimation of radiological risks. Arab. J. Geosci. 15(6), 1–16 (2022)

    Article  Google Scholar 

  15. N. Celik, U.ĞU.R. Cevik, A. Celik, B. Koz, Natural and artificial radioactivity measurements in Eastern Black Sea region of Turkey. J. Hazard. Mater. 162(1), 146–153 (2009)

    Article  Google Scholar 

  16. M.A. Saleh, A.T. Ramli, Y. Alajerami, A.S. Aliyu, Assessment of environmental 226Ra, 232Th and 40K concentrations in the region of elevated radiation background in Segamat District, Johor, Malaysia. J. Environ. Radioact. 124, 130–140 (2013)

    Article  Google Scholar 

  17. M.O. Isinkaye, H.U. Emelue, Natural radioactivity measurements and evaluation of radiological hazards in sediment of Oguta Lake, South East Nigeria. J. Radiat. Res. Appl. Sci. 8(3), 459–469 (2015)

    Article  Google Scholar 

  18. S. Özden, S. Aközcan, Natural radioactivity measurements and evaluation of radiological hazards in sediment of Aliağa Bay, İzmir (Turkey). Arab. J. Geosci. 14(1), 1–14 (2021)

    Article  Google Scholar 

  19. B. Natal'in, G. Sunal, E. Toraman, E.V. Sklyarov, The Strandja arc: Anatomy of Collision After Long-Lived Arc Parallel Tectonic Transport. in Structural and Tectonic Correlation across the Central Asia Orogenic Collage: North-Eastern Segment. Edited by EV Sklyarov. Guidebook and abstract volume of the Siberian Workshop IGCP-480: Irkutsk, IEC SB RAS (2005), pp. 240–245

  20. S. Aközcan, F. Külahcı, Y. Mercan, A suggestion to radiological hazards characterization of 226Ra, 232Th, 40K and 137Cs: spatial distribution modelling. J Hazard Mater 353, 476–489 (2018)

    Article  Google Scholar 

  21. J. Beretka, P.J. Matthew, Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 48(1), 87–95 (1985)

    Article  Google Scholar 

  22. ICRP, The 2007 recommendations of the International commission on radiological protection. ICRP publication 103. Ann. ICRP 37, 1–332 (2007)

    Google Scholar 

  23. R. Krieger, Radioactivity of construction materials. Betonw. Fert. Techn 47, 468 (1981)

    Google Scholar 

  24. A.A. Abojassim, L.H. Rasheed, Natural radioactivity of soil in the Baghdad governorate. Environ. Earth Sci. 80(1), 1–13 (2021)

    Article  ADS  Google Scholar 

  25. N.P.T. Huynh, N.B. Vu, C.H. Le, Long-term accumulation of 226Ra in some agricultural soils based on model assessment. Agric. Water Manag. 243, 106453 (2021)

    Article  Google Scholar 

  26. P. Bangotra, R. Mehra, R. Jakhu, K. Kaur, P. Pandit, S. Kanse, Estimation of 222Rn exhalation rate and assessment of radiological risk from activity concentration of 226Ra, 232Th and 40K. J. Geochem. Explor. 184, 304–310 (2018)

    Article  Google Scholar 

  27. S.A.R. Yousif, A.A. Abojassim, A. Hayder, Mapping of natural radioactivity in soil samples of Badra oil field project using GIS program. Nucl. Phys. At. Energy. 20(1), 60–69 (2019)

    Article  ADS  Google Scholar 

  28. V.R.K. Murty, N. Karunakara, Natural radioactivity in the soil samples of Botswana. Radiat. Meas. 43(9–10), 1541–1545 (2008)

    Article  Google Scholar 

  29. A. Abbasi, A. Kurnaz, Ş Turhan, F. Mirekhtiary, Radiation hazards and natural radioactivity levels in surface soil samples from dwelling areas of North Cyprus. J. Radioanal. Nucl. Chem. 324(1), 203–210 (2020)

    Article  Google Scholar 

  30. M. Tzortzis, E. Svoukis, H. Tsertos, A comprehensive study of natural gamma radioactivity levels and associated dose rates from surface soils in Cyprus. Radiat. Prot. Dosim. 109(3), 217–224 (2004)

    Article  Google Scholar 

  31. L. Kostov, R. Kobilarov, H. Protohristov, C. Stoyanov, Radiological Risk Due to the Terrestrial Gamma Exposure in Soil Samples from Central Balkan National Park, Bulgaria. in: AIP conference proceedings, vol 1. (AIP Publishing, 2019), p 130024

  32. O. Günay, C. Eke, Determination of terrestrial radiation level and radiological parameters of soil samples from Sariyer–Istanbul in Turkey. Arab. J. Geosci. 12(20), 1–10 (2019)

    Article  Google Scholar 

  33. F. Asgharizadeh, M. Ghannadi, A.B. Samani, M. Meftahi, M. Shalibayk, S.A. Sahafipour, E.S. Gooya, Natural radioactivity in surface soil samples from dwelling areas in Tehran city, Iran. Radiat Prot Dosim 156, 376–382 (2013)

    Article  Google Scholar 

  34. K. Aladeniyi, C. Olowookere, B.B. Oladele, Measurement of natural radioactivity and radiological hazard evaluation in the soil samples collected from Owo, Ondo State, Nigeria. J. Radiat. Res. Appl. Sci. 12(1), 200–209 (2019)

    Article  Google Scholar 

  35. M. Tufail, M. Asghar, M. Akram, S. Javied, K. Khan, S.A. Mujahid, Measurement of natural radioactivity in soil from Peshawar basin of Pakistan. J. Radioanal. Nucl. Chem. 298(2), 1085–1096 (2013)

    Article  Google Scholar 

  36. N.N. Garba, A.T. Ramli, M.A. Saleh, H.T. Gabdo, Natural radioactivity and associated radiation hazards in soil of Kelantan, Malaysia. Hum. Ecol. Risk Assess. Int. J. 25(7), 1707–1717 (2019)

    Article  Google Scholar 

  37. H.V. Papaefthymiou, M. Manousakas, A. Fouskas, G. Siavalas, Spatial and vertical distribution and risk assessment of natural radionuclides in soils surrounding the lignite-fired power plants in Megalopolis basin, Greece. Radiat. Prot. Dosim. 156(1), 49–58 (2013)

    Article  Google Scholar 

  38. A. Angjeleska, E. Dimitrieska-Stojkovic, Z. Hajrulai-Musliu, R. Črčeva-Nikolovska, B. Boškovski, Natural radioactivity levels and estimation of radiation exposure in agricultural soils from Skopje city region. Maced. J. Chem. Chem. Eng. 39(1), 77–87 (2020)

    Article  Google Scholar 

  39. N.Q. Huy, P.D. Hien, T.V. Luyen, D.V. Hoang, H.T. Hiep, N.H. Quang, N.Q. Long, D.D. Nhan, N.T. Binh, P.S. Hai, N.T. Ngo, Natural radioactivity and external dose assessment of surface soils in Vietnam. Radiat. Prot. Dosim. 151(3), 522–531 (2012)

    Article  Google Scholar 

  40. M. Sowmya, B. Senthilkumar, B.R.R. Seshan, G. Hariharan, R. Purvaja, S. Ramkumar, R. Ramesh, Natural radioactivity and associated dose rates in soil samples from Kalpakkam, South India. Radiat. Prot. Dosim. 141(3), 239–247 (2010)

    Article  Google Scholar 

  41. R. Ho, Handbook of Univariate and Multivariate Data Analysis With IBM SPSS (CRC Press, 2013)

    Book  MATH  Google Scholar 

  42. E. Devanesan, J. Chandramohan, G. Senthilkumar, N. Harikrishnan, M.S. Gandhi, S.S. Kolekar, R. Ravisankar, Natural radioactivity concentrations and dose assessment in coastal sediments along the East Coast of Tamilnadu, India with statistical approach. Acta Ecol. Sin. 40(5), 353–362 (2020)

    Article  Google Scholar 

  43. M. Abedin, M. Karim, S. Hossain, N. Deb, M. Kamal, M. Miah, H. Ali, M.U. Khandaker, Spatial distribution of radionuclides in agricultural soil in the vicinity of a coal-fired brick kiln. Arab. J. Geosci. 12(7), 1–12 (2019)

    Article  Google Scholar 

  44. A.M.A. Adam, M.A.H. Eltayeb, Multivariate statistical analysis of radioactive variables in two phosphate ores from Sudan. J. Environ. Radioact. 107, 23–43 (2012)

    Article  Google Scholar 

  45. J.C. Davis, R.J. Sampson, Statistics and Data Analysis in Geology, vol. 646 (Wiley, New York, 1986)

    Google Scholar 

Download references

Acknowledgements

Use of facilities at the Central Research Laboratory of Kırklareli University for HPGe detector is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selin Özden.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özden, S. Assessment of natural radioactivity levels and radiological hazard parameters of soils collected from Bulgaria–Turkey border region. Eur. Phys. J. Plus 137, 1368 (2022). https://doi.org/10.1140/epjp/s13360-022-03608-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03608-4

Navigation