Skip to main content

Advertisement

Log in

Heavy Metal Concentrations in the Surface Water of a Crater Lake in Southern China

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study continuously monitored the concentrations of five heavy metals (Cu, Zn, Pb, Cr, and Cd) in the surface water of the famous crater lake in Southern China based on a once a week sampling frequency of four locations from June 2018 to May 2019. The concentrations of these heavy metals and their seasonal variations were discussed by correlating with the lake’s water temperature, pH, and rainfall. The results showed that the weekly Cu, Zn, Pb, Cr, and Cd concentrations ranged from 0.31 to 1.10 µg/L, 0.10 to 2.03 µg/L, 0.01 to 0.50 µg/L, 0.39 to 2.71 µg/L, and 0.00 to 0.86 µg/L, respectively. The mean annual metal concentrations of lake water were in decreasing order of Cr > Zn > Cu > Pb > Cd and within the permissible levels of national water quality guidelines. There was no significant seasonal variation in the heavy metal concentration between the wet and dry seasons. However, except for Cr, the other metals’ mean concentrations were slightly higher in the wet season than the dry season, likely due to rainfall-related inputs. Based on correlation analysis, water temperature and pH may have influenced the concentrations of Zn and Cu, respectively, while the concentration of both metals was not affected by rainfall and showed high fluctuations throughout the sampling period, suggesting airborne related dust source inputs. Conversely, Pb concentration was influenced mainly by rainfall and temperature and is likely rain-related source inputs. Meanwhile, the negative correlation between the Cr concentration and pH value of lake water suggests that Cr is mainly derived from sediments. In contrast, the Cd concentration is not related to these factors as its content is generally a reflection of background value. Finally, the characteristics of these five heavy metals in this closed hydrological system of the Huguang Maar Lake suggest that atmospheric deposition and weathering-related inputs are important in evaluating heavy metal concentration levels in a close lake system for sustainable protection of its ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abarike, G. A., Song, Z., Han, Y., Wang, S., Bin, W., & Yaoqian, L. (2021). Dissolved organic carbon concentration and its seasonal variation in the Huguangyan Maar Lake of Southern China. Acta Geochimica, 1–13. https://doi.org/10.1007/s11631-021-00470-6

  • Adesiyan, I. M., Bisi-Johnson, M., Aladesanmi, O. T., Okoh, A. I., & Ogunfowokan, A. O. (2018). Concentrations and human health risk of heavy metals in rivers in southwest Nigeria. Journal of Health and Pollution, 8(19). https://doi.org/10.5696/2156-9614-8.19.180907

  • Avila-Pérez, P., Balcázar, M., Zarazúa-Ortega, G., Barceló-Quintal, I., & Dıaz-Delgado, C. (1999). Heavy metal concentrations in water and bottom sediments of a Mexican reservoir. Science of the Total Environment, 234(1–3), 185–196. https://doi.org/10.1016/s0048-9697(99)00258-2

    Article  Google Scholar 

  • Azimi, S., Rocher, V., Garnaud, S., Varrault, G., & Thevenot, D. R. (2005). Decrease of atmospheric deposition of heavy metals in an urban area from 1994 to 2002 (Paris, France). Chemosphere, 61(5), 645–651. https://doi.org/10.1016/j.chemosphere.2005.03.022. (hal-01180059)

  • Baba, A., Gurdal, G., Sengunalp, F., & Ozay, O. (2008). Effects of leachant temperature and pH on leachability of metals from fly ash. A case study: Can thermal power plant, province of Canakkale Turkey. Environmental Monitoring and Assessment, 139(1), 287–298. https://doi.org/10.1007/s10661-007-9834-8

    Article  CAS  Google Scholar 

  • Barr, C., Tibby, J., Gell, P., Tyler, J., Zawadzki, A., & Jacobsen, G. E. (2014). Climate variability in south-eastern Australia over the last 1500 years inferred from the high-resolution diatom records of two crater lakes. Quaternary Science Reviews, 95, 115–131. https://doi.org/10.1016/j.quascirev.2014.05.001

    Article  Google Scholar 

  • Bazrafshan, E., Mostafapour, F. K., Esmaelnejad, M., Ebrahimzadeh, G. R., & Mahvi, A. H. (2016). Concentration of heavy metals in surface water and sediments of Chah Nimeh water reservoir in Sistan and Baluchestan province Iran. Desalination and Water Treatment, 57(20), 9332–9342. https://doi.org/10.1080/19443994.2015.1027958

    Article  CAS  Google Scholar 

  • Bonatotzky, T., Ottner, F., Erlendsson, E., & Gísladóttir, G. (2019). The weathering of volcanic tephra and how they impact histosol development. An example from South East Iceland. CATENA, 172, 634–646. https://doi.org/10.1016/j.catena.2018.09.022

    Article  CAS  Google Scholar 

  • Borma, L. D. S., Ehrlich, M., & Barbosa, M. C. (2003). Acidification and release of heavy metals in dredged sediments. Canadian Geotechnical Journal, 40(6), 1154–1163. https://doi.org/10.1139/t03-062

    Article  Google Scholar 

  • Chang, C.-Y., Yu, H.-Y., Chen, J. J., Li, F. B., Zhang, H. H., & Liu, C. P. (2014). Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta South China. Environmental Monitoring and Assessment, 186(3), 1547–1560. https://doi.org/10.1007/s10661-013-3472-0

    Article  CAS  Google Scholar 

  • Chen, C., Zheng, Z., Zeng, L.-F., Xiao, F., Tian, L.-P., & Huang, K.-Y. (2021). A combined geophysical and lithological study on eruptive history and Quaternary lacustrine stratigraphy of a maar in Leizhou Peninsula China. Journal of Palaeogeography, 10(1), 1–14. https://doi.org/10.1186/s42501-020-00081-x

    Article  Google Scholar 

  • Chen, F., Lau Qibin, Yu., Peiwang, Z. Q., Fengxia, Z., Xin, Z., & Meng Yafei, W. M. (2018). Spatial and temporal distributions of nutrients and their influencing factors in the Huguangyan Maar Lake. Lake Science, 30(6), 1693–1706.

    Article  Google Scholar 

  • Cohen, M. D., Draxler, R. R., Artz, R., Commoner, B., Bartlett, P., Cooney, P., Couchot, K., Dickar, A., Eisl, H., & Hill, C. (2002). Modeling the atmospheric transport and deposition of PCDD/F to the Great Lakes. Environmental Science and Technology, 36(22), 4831–4845. https://doi.org/10.1021/es0157292

    Article  CAS  Google Scholar 

  • Chu, G.Q., and J.Q. Liu. (2018). Maar lakes in China and their significance in paleoclimatic research. Acta Petrologica Sinica 34(1), 4–12 (in Chinese with English Abstract)

  • Deka, J. P., Tayeng, G., Singh, S., Hoque, R. R., Prakash, A., & Kumar, M. (2015). Source and seasonal variation in the major ion chemistry of two eastern Himalayan high altitude lakes India. Arabian Journal of Geosciences, 8(12), 10597–10610. https://doi.org/10.1007/s12517-015-1964-7

    Article  CAS  Google Scholar 

  • Ding, X. L., Feng, C. B., Liu, Q., Yan, J. W., Zhang, Y. D., & Luo, G. Q. (2019). Engineering design highlights of high-efficiency slab casters relocated at Baosteel Zhanjiang. IOP Conference Series Materials Science and Engineering, 668(1), 12002. https://doi.org/10.1088/1757-899X/668/1/012002

    Article  CAS  Google Scholar 

  • Dukes, A. D., Eklund, R. T., Morgan, Z. D., & Layland, R. C. (2020). Heavy metal concentration in the water and sediment of the Lake Greenwood Watershed. Water Air and Soil Pollution, 231(1), 1–9. https://doi.org/10.1007/s11270-019-4364-x

    Article  CAS  Google Scholar 

  • Ebrahimpour, M., & Mushrifah, I. (2008). Heavy metal concentrations in water and sediments in Tasik Chini, a freshwater lake Malaysia. Environmental Monitoring and Assessment, 141(1), 297–307. https://doi.org/10.1007/s10661-007-9896-7

    Article  CAS  Google Scholar 

  • Ekka, S. A., Rujner, H., Leonhardt, G., Blecken, G.-T., Viklander, M., & Hunt, W. F. (2021). Next generation swale design for stormwater runoff treatment: A comprehensive approach. Journal of Environmental Management, 279, 111756. https://doi.org/10.1016/j.jenvman.2020.111756

    Article  CAS  Google Scholar 

  • EPA, U. (2006). Edition of the drinking water standards and health advisories. US Environmental Protection Agency, Washington, DC, Epa.

  • Elith, M., & Garwood, S. (2001). Investigation into the levels of heavy metals within Manly Dam Catchment. Freshwater Ecology Report, 4.

  • Fang, J., Wu, F., Xiong, Y., Li, F., Yang, H., Wang, S., & Xie, Y. (2018). Sources of organic matter in the surface sediments from Lake Sihailongwan Maar and Lake Zhanjiang Maar (Lake Huguangyan Maar) in China. Limnologica, 69, 18–23. https://doi.org/10.1016/j.limno.2017.08.004

    Article  CAS  Google Scholar 

  • Feng, G. R. (1992). Basic characteristics and relationship to tectonic environment of the Late Cenozoic basalts along the coast of South China Sea. Journal of Zhongshan University, 27(1), 93–103.

    Google Scholar 

  • Feng, H., Han, X., Zhang, W., & Yu, L. (2004). A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Marine Pollution Bulletin, 49(11–12), 910–915. https://doi.org/10.1016/j.marpolbul.2004.06.014

    Article  CAS  Google Scholar 

  • Han, L., Zhao, X., Jin, J., Gao, B., Yang, Y., Sun, K., & Li, F. (2019). Using sequential extraction and DGT techniques to assess the efficacy of plant-and manure-derived hydrochar and pyrochar for alleviating the bioavailability of Cd in soils. Science of the Total Environment, 678, 543–550. https://doi.org/10.1016/j.scitotenv.2019.05.039

    Article  CAS  Google Scholar 

  • Hao, Z., Chen, L., Wang, C., Zou, X., Zheng, F., Feng, W., Zhang, D., & Peng, L. (2019). Heavy metal distribution and bioaccumulation ability in marine organisms from coastal regions of Hainan and Zhoushan, China. Chemosphere, 226, 340–350. https://doi.org/10.1016/j.chemosphere.2019.03.132

    Article  CAS  Google Scholar 

  • Hasan, M. R., Khan, M. Z. H., Khan, M., Aktar, S., Rahman, M., Hossain, F., & Hasan, A. (2016). Heavy metals distribution and contamination in surface water of the Bay of Bengal coast. Cogent Environmental Science, 2(1), 1140001. https://doi.org/10.1080/23311843.2016.1140001

    Article  CAS  Google Scholar 

  • Hashmi, M. Z., Yu, C., Shen, H., Duan, D., Shen, C., Lou, L., & Chen, Y. (2014). Concentrations and human health risk assessment of selected heavy metals in surface water of the Siling reservoir watershed in Zhejiang Province, China. Polish Journal of Environmental Studies, 23(3), 801–811

  • He, B., Wang, W., Geng, R., Ding, Z., Luo, D., Qiu, J., Zheng, G., & Fan, Q. (2021). Exploring the fate of heavy metals from mining and smelting activities in soil-crop system in Baiyin NW China. Ecotoxicology and Environmental Safety, 207, 111234. https://doi.org/10.1016/j.ecoenv.2020.111234

    Article  CAS  Google Scholar 

  • HELCOM. (2007). Heavy metal pollution to the Baltic Sea in 2004. Baltic Marine Environment Protection Commission-Helsinki Commission.

  • Huang, D.-Y., Xu, Y.-G., Zhou, B., Zhang, H.-H., & Lan, J.-B. (2010). Wet deposition of nitrogen and sulfur in Guangzhou, a subtropical area in South China. Environmental Monitoring and Assessment, 171(1–4), 429–439. https://doi.org/10.1007/s10661-009-1289-7

    Article  CAS  Google Scholar 

  • Huang, J., Yuan, F., Zeng, G., Li, X., Gu, Y., Shi, L., Liu, W., & Shi, Y. (2017). Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere, 173, 199–206. https://doi.org/10.1016/j.chemosphere.2016.12.137

    Article  CAS  Google Scholar 

  • Iqbal, J., & Shah, M. H. (2013). Health risk assessment of metals in surface water from freshwater source lakes, Pakistan. Human and Ecological Risk Assessment: An International Journal, 19(6), 1530–1543. https://doi.org/10.1080/10807039.2012.716681

  • Jia, G., Bai, Y., Yang, X., Xie, L., Wei, G., Ouyang, T., Chu, G., Liu, Z., & Peng, P. (2015). Biogeochemical evidence of holocene east asian summer and winter monsoon variability from a tropical maar lake in southern China. Quaternary Science Reviews, 111, 51–61. https://doi.org/10.1016/j.quascirev.2015.01.002

    Article  Google Scholar 

  • Kohušová, K., Havel, L., Vlasák, P., & Tonika, J. (2011). A long-term survey of heavy metals and specific organic compounds in biofilms, sediments, and surface water in a heavily affected river in the Czech Republic. Environmental Monitoring and Assessment, 174(1–4), 555–572. https://doi.org/10.1007/s10661-010-1478-4

    Article  CAS  Google Scholar 

  • Li, S., & Zhang, Q. (2010). Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River China. Journal of Hazardous Materials, 181(1–3), 1051–1058. https://doi.org/10.1016/j.jhazmat.2010.05.120

    Article  CAS  Google Scholar 

  • Li, G., Liu, G., Zhou, C., Chou, C.-L., Zheng, L., & Wang, J. (2012a). Spatial distribution and multiple sources of heavy metals in the water of Chaohu Lake, Anhui China. Environmental Monitoring and Assessment, 184(5), 2763–2773. https://doi.org/10.1007/s10661-011-2149-9.

  • Li, J., Fang, Y., Yoh, M., Wang, X., Wu, Z., Kuang, Y., & Wen, D. (2012b). Organic nitrogen deposition in precipitation in metropolitan Guangzhou city of southern China. Atmospheric Research, 113, 57–67. https://doi.org/10.1016/j.atmosres.2012.04.019.

  • Li, H., Shi, A., Li, M., & Zhang, X. (2013).Effect of pH, temperature, dissolved oxygen, and flow rate of overlying water on heavy metals release from storm sewer sediments. Journal of Chemistry, 2013. https://doi.org/10.1155/2013/434012

  • Lim, P.-E., Lee, C.-K., & Din, Z. (1995). Accumulation of heavy metals by cultured oysters from Merbok Estuary Malaysia. Marine Pollution Bulletin, 31(4–12), 420–423.

    Article  CAS  Google Scholar 

  • Lin, Z., Chen, H., & Yang, H. (2020). Risk of contamination of infiltrated water and underground soil by heavy metals within a ceramic permeable brick paving system. Environmental Science and Pollution Research, 27(18), 22795–22805. https://doi.org/10.1007/s11356-020-08745-w

    Article  CAS  Google Scholar 

  • Liu, H., & Li, W. (2011). Dissolved trace elements and heavy metals from the shallow lakes in the middle and lower reaches of the Yangtze River region, China. Environmental Earth Sciences, 62(7), 1503–1511. https://doi.org/10.1007/s12665-010-0634-z

  • Luo, L., Ma, Y., Zhang, S., Wei, D., & Zhu, Y.-G. (2009). An inventory of trace element inputs to agricultural soils in China. Journal of Environmental Management, 90(8), 2524–2530. https://doi.org/10.1016/j.jenvman.2009.01.011

    Article  CAS  Google Scholar 

  • Martín-Serrano, A., Vegas, J., García-Cortés, A., Galán, L., Gallardo-Millán, J. L., Martín-Alfageme, S., Rubio, F. M., Ibarra, P. I., Granda, A., & Pérez-González, A. (2009). Morphotectonic setting of maar lakes in the Campo de Calatrava volcanic field (central Spain, SW Europe). Sedimentary Geology, 222(1–2), 52–63. https://doi.org/10.1016/j.sedgeo.2009.07.005

    Article  Google Scholar 

  • McGuire, L. A., Rengers, F. K., Kean, J. W., Staley, D. M., & Mirus, B. B. (2018). Incorporating spatially heterogeneous infiltration capacity into hydrologic models with applications for simulating post-wildfire debris flow initiation. Hydrological Processes, 32(9), 1173–1187. https://doi.org/10.1002/hyp.11458

    Article  Google Scholar 

  • McNab, W., Hoffman, F., & Dooher, B. (2006). Groundwater pollution and remediation. In Encyclopedia of Hydrological Sciences (Eds M.G. Anderson and J.J. McDonnell). https://doi.org/10.1002/0470848944.hsa159

  • Mingram, J., Schettler, G., Nowaczyk, N., Luo, X., Lu, H., Liu, J., & Negendank, J. F. W. (2004). The Huguang maar lake-a high-resolution record of palaeoenvironmental and palaeoclimatic changes over the last 78,000 years from South China. Quaternary International, 122(1 SPEC. ISS.), 85–107. https://doi.org/10.1016/j.quaint.2004.02.001

  • Ministry of Health, P. C. (2007). The National Standards of the People’s Republic of China Environmental Quality Standards for Surface Water: Vol. UDC614.7. Elsevier.

  • Nag, S., & Pande, P. K. (2015). Effect of idol immersion on water quality of Yamuna River in Delhi and its potential influence on ground water quality. Indian Journal of Geo-Marine Sciences, 44(10), 1545–1553.

  • Ochieng, E. Z., Lalah, J. O., & Wandiga, S. O. (2007). Analysis of heavy metals in water and surface sediment in five rift valley lakes in Kenya for assessment of recent increase in anthropogenic activities. Bulletin of Environmental Contamination and Toxicology, 79(5), 570–576. https://doi.org/10.1007/s00128-007-9286-4

    Article  CAS  Google Scholar 

  • Ortiz, J. E., Moreno, L., Torres, T., Vegas, J., Ruiz-Zapata, B., García-Cortés, Á., Galán, L., & Pérez-González, A. (2013). A 220 ka palaeoenvironmental reconstruction of the Fuentillejo maar lake record (Central Spain) using biomarker analysis. Organic Geochemistry, 55, 85–97. https://doi.org/10.1016/j.orggeochem.2012.11.012

    Article  CAS  Google Scholar 

  • Ouyang, Y., Higman, J., Thompson, J., O’Toole, T., & Campbell, D. (2002). Characterization and spatial distribution of heavy metals in sediment from Cedar and Ortega rivers subbasin. Journal of Contaminant Hydrology, 54(1–2), 19–35.

    Article  CAS  Google Scholar 

  • Park, J., Sanford, R. A., & Bethke, C. M. (2009). Microbial activity and chemical weathering in the Middendorf aquifer South Carolina. Chemical Geology, 258(3–4), 232–241. https://doi.org/10.1016/j.chemgeo.2008.10.011

    Article  CAS  Google Scholar 

  • Rothwell, J. J., Evans, M. G., Daniels, S. M., & Allott, T. E. H. (2007). Baseflow and stormflow metal concentrations in streams draining contaminated peat moorlands in the Peak District National Park (UK). Journal of Hydrology, 341(1–2), 90–104. https://doi.org/10.1016/j.jhydrol.2007.05.004

    Article  Google Scholar 

  • Sabin, L. D., Lim, J. H., Stolzenbach, K. D., & Schiff, K. C. (2005). Contribution of trace metals from atmospheric deposition to stormwater runoff in a small impervious urban catchment. Water Research, 39(16), 3929–3937. https://doi.org/10.1016/j.watres.2005.07.003

    Article  CAS  Google Scholar 

  • Samecka-Cymerman, A., & Kempers, A. J. (2001). Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Science of the Total Environment, 281(1–3), 87–98. https://doi.org/10.1016/s0048-9697(01)00838-5

    Article  CAS  Google Scholar 

  • Saria, L., Shimaoka, T., & Miyawaki, K. (2006). Leaching of heavy metals in acid mine drainage. Waste Management and Research, 24(2), 134–140. https://doi.org/10.1177/0734242X06063052

    Article  CAS  Google Scholar 

  • Schmitt, D., Saravia, F., Frimmel, F. H., & Schuessler, W. (2003). NOM-facilitated transport of metal ions in aquifers: Importance of complex-dissociation kinetics and colloid formation. Water Research, 37(15), 3541–3550. https://doi.org/10.1016/S0043-1354(01)00525-5

    Article  CAS  Google Scholar 

  • Shang, S., Zhong, W., Wei, Z., Zhu, C., Ye, S., Tang, X., Chen, Y., Tian, L., & Chen, B. (2017). Heavy metals in surface sediments of lakes in Guangzhou public parks in China and their relations with anthropogenic activities and urbanization. Human and Ecological Risk Assessment An International Journal, 23(8), 2002–2016. https://doi.org/10.1080/10807039.2017.1358078

    Article  CAS  Google Scholar 

  • Sharma, R. K., Agrawal, M., & Marshall, F. M. (2008). Atmospheric deposition of heavy metals (Cu, Zn, Cd and Pb) in Varanasi city India. Environmental Monitoring and Assessment, 142(1), 269–278. https://doi.org/10.1007/s10661-007-9924-7

    Article  CAS  Google Scholar 

  • Shen, J., Wu, X., Zhang, Z., Gong, W., He, T., Xu, X., & Dong, H. (2013). Ti content in Huguangyan maar lake sediment as a proxy for monsoon-induced vegetation density in the Holocene. Geophysical Research Letters, 40(21), 5757–5763. https://doi.org/10.1002/grl.50740

    Article  Google Scholar 

  • Shen, B., Wang, X., Zhang, Y., Zhang, M., Wang, K., Xie, P., & Ji, H. (2020). The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application. Science of the Total Environment, 711, 135229. https://doi.org/10.1016/j.scitotenv.2019.135229

    Article  CAS  Google Scholar 

  • Sheng, M., Wang, X., Zhang, S., Chu, G., Su, Y., & Yang, Z. (2017). A 20,000-year high-resolution pollen record from Huguangyan Maar Lake in tropical–subtropical South China. Palaeogeography Palaeoclimatology Palaeoecology, 472, 83–92. https://doi.org/10.1016/j.palaeo.2017.01.038

    Article  Google Scholar 

  • Showqi, I., Lone, F. A., & Naikoo, M. (2018). Preliminary assessment of heavy metals in water, sediment and macrophyte (Lemna minor) collected from Anchar Lake, Kashmir India. Applied Water Science, 8(3), 1–11. https://doi.org/10.1007/s13201-018-0720-z

    Article  CAS  Google Scholar 

  • Shree, B. V., & Nishikant, G. (2019). Examining the heavy metal contents of an estuarine ecosystem: Case study from Maharashtra India. Journal of Coastal Conservation, 23(6), 977–984. https://doi.org/10.1007/s11852-019-00702-1

    Article  Google Scholar 

  • Simona, C., Angela, R. F., & de Santo Amalia, V. (2004). Suitability of soil microbial parameters as indicators of heavy metal pollution. Water Air and Soil Pollution, 158(1), 21–35.

    Article  Google Scholar 

  • Smith, E. J., Hughes, S., Lawlor, A. J., Lofts, S., Simon, B. M., Stevens, P. A., Stidson, R. T., Tipping, E., & Vincent, C. D. (2005). Potentially toxic metals in ombrotrophic peat along a 400 km English-Scottish transect. Environmental Pollution, 136(1), 11–18. https://doi.org/10.1016/j.envpol.2004.12.015

    Article  CAS  Google Scholar 

  • Smith, R. E., & Goodrich, D. C. (2006). Rainfall excess overland flow. In Encyclopedia of Hydrological Sciences. M.G. Anderson and J.J. McDonnell (Editors). John Wiley and Sons, Chichester, United Kingdom, pp. 1707–1718.

  • Sun, C., Plunkett, G., Wang, L., Mingram, J., Han, J., Chu, G., & Liu, J. (2022). Four widespread East Asian tephra marker horizons during early MIS 3:∼ 60–50 ka tephrostratigraphy of Huguangyan Maar Lake southern China. Quaternary Science Reviews, 279, 107389. https://doi.org/10.1016/j.quascirev.2022.107389

    Article  Google Scholar 

  • Suresh, G., Sutharsan, P., Ramasamy, V., & Venkatachalapathy, R. (2012). Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicology and Environmental Safety, 84, 117–124. https://doi.org/10.1016/j.ecoenv.2012.06.027

    Article  CAS  Google Scholar 

  • Talabi, A. O., & Kayode, T. J. (2019). Groundwater pollution and remediation. Journal of Water Resource and Protection, 11(01), 1. https://doi.org/10.4236/jwarp.2019.111001

    Article  CAS  Google Scholar 

  • Tokalioglu, S., Kartal, S., & Elci, L. (2000). Speciation and determination of heavy metals in lake waters by atomic absorption spectrometry after sorption on amberlite XAD-16 resin. Analytical Sciences, 16(11), 1169–1174. https://doi.org/10.2116/analsci.16.1169

    Article  CAS  Google Scholar 

  • Valencia-Avellan, M., Slack, R., Stockdale, A., & Mortimer, R. J. G. (2017). Effect of episodic rainfall on aqueous metal mobility from historical mine sites. Environmental Chemistry, 14(8), 469–475. https://doi.org/10.1071/EN17133

    Article  CAS  Google Scholar 

  • Visser, A., Kroes, J., van Vliet, M. T. H., Blenkinsop, S., Fowler, H. J., & Broers, H. P. (2012). Climate change impacts on the leaching of a heavy metal contamination in a small lowland catchment. Journal of Contaminant Hydrology, 127(1–4), 47–64. https://doi.org/10.1016/j.jconhyd.2011.04.007

    Article  CAS  Google Scholar 

  • Wang, X. (2019). Study on relationship between green logistics activity and logistics performance. Cluster Computing, 22(3), 6579–6588. https://doi.org/10.1007/2Fs10586-018-2344-3

    Article  Google Scholar 

  • Wang, Y., & Björn, L. O. (2014). Heavy metal pollution in Guangdong Province, China, and the strategies to manage the situation. Frontiers in Environmental Science, 2, 9. https://doi.org/10.3389/fenvs.2014.00009

    Article  Google Scholar 

  • Wang, L., Chen, W., Zhou, W., & Huang, R. (2009). Interannual variations of East Asian trough axis at 500 hPa and its association with the East Asian winter monsoon pathway. Journal of Climate, 22(3), 600–614. https://doi.org/10.1175/2008JCLI2295.1

    Article  Google Scholar 

  • Wang, L., Li, J., Lu, H., Gu, Z., Rioual, P., Hao, Q., Mackay, A. W., Jiang, W., Cai, B., & Xu, B. (2012). The East Asian winter monsoon over the last 15,000 years: Its links to high-latitudes and tropical climate systems and complex correlation to the summer monsoon. Quaternary Science Reviews, 32, 131–142. https://doi.org/10.1016/j.quascirev.2011.11.003

    Article  CAS  Google Scholar 

  • Wang, S., Meng, W., Jin, X., Zheng, B., Zhang, L., & Xi, H. (2015). Ecological security problems of the major key lakes in China. Environmental Earth Sciences, 74(5), 3825–3837. https://doi.org/10.1007/s12665-015-4191-3

    Article  Google Scholar 

  • Wang, Luo, Lu, H., Liu, J., Gu, Z., Mingram, J., Chu, G., Li, J., Rioual, P., Negendank, J. F. W., & Han, J. (2008). Diatom‐based inference of variations in the strength of Asian winter monsoon winds between 17,500 and 6000 calendar years BP. Journal of Geophysical Research: Atmospheres, 113(D21). https://doi.org/10.1029/2008JD010145

  • Weerasundara, L., Magana-Arachchi, D. N., Ziyath, A. M., Goonetilleke, A., & Vithanage, M. (2018). Health risk assessment of heavy metals in atmospheric deposition in a congested city environment in a developing country: Kandy City, Sri Lanka. Journal of Environmental Management, 220, 198–206. https://doi.org/10.1016/j.jenvman.2018.04.036

    Article  CAS  Google Scholar 

  • Wijngaard, R. R., van der Perk, M., van der Grift, B., de Nijs, T. C. M., & Bierkens, M. F. P. (2017). The impact of climate change on metal transport in a lowland catchment. Water Air and Soil Pollution, 228(3), 107. https://doi.org/10.1007/s11270-017-3261-4

    Article  CAS  Google Scholar 

  • Wong, S. C., Li, X. D., Zhang, G., Qi, S. H., & Min, Y. S. (2002). Heavy metals in agricultural soils of the Pearl River Delta South China. Environmental Pollution, 119(1), 33–44. https://doi.org/10.1016/S0269-7491(01)00325-6

    Article  CAS  Google Scholar 

  • WHO (2011). Guidelines for drinking-water quality: recommendations. World Health Organization, Geneva, 216, 303–304.

  • Wu, B., Zhao, D. Y., Jia, H. Y., Zhang, Y., Zhang, X. X., & Cheng, S. P. (2009). Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing Section, China. Bulletin of Environmental Contamination and Toxicology, 82(4), 405–409. https://doi.org/10.1007/s00128-008-9497-3

    Article  CAS  Google Scholar 

  • Wu, X., Zhang, Z., Xu, X., & Shen, J. (2012). Asian summer monsoonal variations during the Holocene revealed by Huguangyan maar lake sediment record. Palaeogeography Palaeoclimatology Palaeoecology, 323–325, 13–21. https://doi.org/10.1016/j.palaeo.2012.01.020

    Article  Google Scholar 

  • Wu, Q., Qi, J., & Xia, X. (2017). Long-term variations in sediment heavy metals of a reservoir with changing trophic states: Implications for the impact of climate change. Science of the Total Environment, 609, 242–250. https://doi.org/10.1016/j.scitotenv.2017.04.041

    Article  CAS  Google Scholar 

  • Wu, W., Qu, S., Nel, W., & Ji, J. (2021). The influence of natural weathering on the behavior of heavy metals in small basaltic watersheds: A comparative study from different regions in China. Chemosphere, 262, 127897. https://doi.org/10.1016/j.chemosphere.2020.127897

    Article  CAS  Google Scholar 

  • Wu, Z., Ma, T., Lai, X., & Li, K. (2021). Concentration, distribution, and assessment of dissolved heavy metals in rivers of Lake Chaohu Basin China. Journal of Environmental Management, 300, 113744. https://doi.org/10.1016/j.jenvman.2021.113744

    Article  CAS  Google Scholar 

  • Xiaojuan, S., Shulan, Z., & Lian, D. (2012). Leaching characteristics of MSW compost heavy metals in soil under different temperatures and simulated acid rain. Chinese Journal of Environmental Engineering, 6(3), 995–999.

    Google Scholar 

  • Xie, S., Ma, Y., Strong, P. J., & Clarke, W. P. (2015). Fluctuation of dissolved heavy metal concentrations in the leachate from anaerobic digestion of municipal solid waste in commercial scale landfill bioreactors: The effect of pH and associated mechanisms. Journal of Hazardous Materials, 299, 577–583. https://doi.org/10.1016/j.jhazmat.2015.07.065

    Article  CAS  Google Scholar 

  • Xue-Min, Yang, Q., & Qun, X. (2008). Onset and end of the first rainy season in South China. Chinese Journal of Geophysics- Chinese Edition, 51, 1333–1345. https://doi.org/10.1002/cjg2.1289

    Article  Google Scholar 

  • Yancheva, G., Nowaczyk, N. R., Mingram, J., Dulski, P., Schettler, G., Negendank, J. F. W., Liu, J., Sigman, D. M., Peterson, L. C., & Haug, G. H. (2007). Influence of the intertropical convergence zone on the East Asian monsoon. Nature, 445(7123), 74–77. https://doi.org/10.1038/nature05431

    Article  CAS  Google Scholar 

  • Yang, X., Duan, J., Wang, L., Li, W., Guan, J., Beecham, S., & Mulcahy, D. (2015). Heavy metal pollution and health risk assessment in the Wei River in China. Environmental Monitoring and Assessment, 187(3), 111.

    Article  Google Scholar 

  • Yuan, H., Shen, J., Liu, E., Wang, J., & Meng, X. (2011). Assessment of nutrients and heavy metals enrichment in surface sediments from Taihu Lake, a eutrophic shallow lake in China. Environmental Geochemistry and Health, 33(1), 67–81. https://doi.org/10.1007/s10653-010-9323-9.

    Article  CAS  Google Scholar 

  • Zaharescu, D. G., Hooda, P. S., Soler, A. P., Fernandez, J., & Burghelea, C. I. (2009). Trace metals and their source in the catchment of the high altitude Lake Respomuso, Central Pyrenees. Science of the Total Environment, 407(11), 3546–3553. https://doi.org/10.1016/j.scitotenv.2009.02.026

    Article  CAS  Google Scholar 

  • Zhao, J., Xiao, L., & Glotch, T. D. (2020). Paleolakes in the Northwest Hellas region, Mars: Implications for the regional geologic history and paleoclimate. Journal of Geophysical Research: Planets, 125(3), e2019JE006196. https://doi.org/10.1029/2019JE006196

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the administration of the Huguangyan Maar Lake for free entrance permission to collect water samples and to the Zhanjiang Meteorological Bureau for accessing the regional meteorological data.

Funding

This study was funded by the Special Talent Support Program of Guangdong Ocean University (No. R17001), the Project of Marine Geochemistry and Climate Change of Guangdong Ocean University (No. 002026002004), and the Guangxi Natural Science Foundation (No. 2018GXNSFBA050049).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Grace A. Abarike, Sibo Wang, Yongqian Han, and Cao Xing Xing. The first draft of the manuscript was written by Grace A. Abarike and revised by Zhiguang Song. Rainfall data was collected by Wen Bin. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhiguang Song.

Ethics declarations

Consent for Publication

All authors are aware of the intended publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Five heavy metal concentration of a crater lake water was continuously monitored for 1 year.

These metal concentrations fluctuated weekly but showed no significant seasonal variation.

Heavy metals Zn, Cu, and Pb are originated mainly from atmospheric wet and dust deposition.

Only the metal Cr is influenced by the pH value of the lake, while metal Cd falls in the background level.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abarike, G.A., Wang, S., Xing Xing, C. et al. Heavy Metal Concentrations in the Surface Water of a Crater Lake in Southern China. Water Air Soil Pollut 233, 208 (2022). https://doi.org/10.1007/s11270-022-05683-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05683-w

Keywords

Navigation