Skip to main content

Advertisement

Log in

Effects of leachant temperature and pH on leachability of metals from fly ash. A case study: Can thermal power plant, province of Canakkale, Turkey

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Lignite powered electric generation plants result in increasing environmental problems associated with gaseous emissions and the disposal of ash residues. Especially, low quality coals with high ash content cause enormous quantities of both gaseous and solid fly ash emissions. The main problem is related to the disposal of fly ash, which, in many cases, contains heavy metals. It is known that toxic trace metals may leach when fly ash is in contact with water. In this study, fly ash samples obtained from the thermal power plant in the town of Can in Turkey were investigated for leachability of metals under different acidic and temperature conditions. The experimental results show that a decrease in pH of the leachant favors the extraction of metal ions from fly ash. A significant increase in the extraction of arsenic, cadmium, chromium, zinc, lead, mercury, and selenium ions from the ash is attributed to the instability of the mineral phases. These heavy metals concentrations increase with respect to increasing acidic conditions and temperature. Peak concentrations, in general, were found at around 30°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriano, D. C., Capp, P. J., & Gillmore, W. D. (1980). Coal mine spoil and refuse bank reclamation with powerplant fly ash. Compost Science, 13, 20–26.

    Google Scholar 

  • Baba, A. (2000). Investigation of environmental geology of the Yatagan (Mugla-Turkey) thermal power plant waste. Ph.D. Thesis, Dokuz Eylul University.

  • Baba, A. (2003). Geochemical assessment of environmental effects of ash from Yatagan (Mugla-Turkey) thermal power plant. Water, Air, and Soil Pollution, 144, 3–18.

    Article  CAS  Google Scholar 

  • Baba, A, & Kaya, A. (2004). Leaching characteristics of solid wastes from thermal power plants of Western Turkey and comparison of toxicity methodologies. Journal of Environmental Management, 73, 199–207.

    Article  Google Scholar 

  • Baba, A., Kaya, A., & Birsoy, Y. (2003). The effect of Yatagan thermal power plant (Mugla-Turkey) on the quality of surface and ground waters. Water, Air, and Soil Pollution, 149, 93–111.

    Article  CAS  Google Scholar 

  • Baba, A., & Turkman, A. (2001). Investigation of geochemical and leaching characteristics of solid wastes from Yeniköy (Mugla-Turkey) power plant. Turkish Journal of Engineering and Environmental Sciences, 25, 315–319.

    Google Scholar 

  • Baba, A., & Usmen, M. A. (2006). Effects of fly ash from coal-burning electrical utilities on ecosystem and utilization of fly ash. In A. Baba, K. W. F. Howard, & O. Gunduz (Eds.), Groundwater and ecosystems (pp. 15–31). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Campbell, J. A., Laul, J. C., Neilson, K. K., & Smith, R. D. (1978). Separation and chemical characterization of finely-sized fly ash particles. Analytical Chemistry, 50(8), 1032–1040.

    Article  CAS  Google Scholar 

  • Carlin, J. (2002). Environmental externalities in electric power markets: Acid rain, urban ozone, and climate change, alternative flues. Retrieved from http://www.eia.doe.gov.

  • Chang, A. C., Lund J. L., Page, L. A., & Warneke, E. J. (1977). Physical properties of fly ash-amended soils. Journal of Environmental Quality, 6, 267–270.

    Article  CAS  Google Scholar 

  • Davidson, R. M., & Clarke L. B. (1996). Trace elements in coal. IEA Coal Research, IEAPER/21.

  • Davison, R. L., Natusch, D. F. S., Wallace, J. R., & Evans, C. A. Jr (1974). Trace elements in fly ash, dependence of concentration on particle size. Environmental Science and Technology, 8–13, 1107–1112.

    Article  Google Scholar 

  • EPRI. (1998). Toxics release inventory, chemical profile, environmental division. Palo Alto: Electric Power Research Institute.

    Google Scholar 

  • Fernandez-Turiel, J. L., Carvalho, W., Cabanas, M., Querol, X., & Lopez, A. (1994). Mobility of heavy metals from coal fly ash. Environmental Geology, 23, 264–270.

    CAS  Google Scholar 

  • Finkelman, R.B. (1994). Modes of occurrences of potential hazardous elements in coal, level of confidence. Fuel Process Technology, 39(1–3), 21–34.

    Article  CAS  Google Scholar 

  • Fleming, L. N., Abinteh, H. N., & Inyang, H. I. (1996). Leachant pH effects on the leachability of metals from fly ash. Journal of Soil Contamination, 5(1), 53–59.

    CAS  Google Scholar 

  • Furr, A. K, Parkinson, T. F, Hinrichs, R. A, Van Campen, D. R, Bache, C. A., & Gutenmann, W. H. (1977). National survey of elements and radioactivity in fly ash. Absorption of elements by cabbage grown in fly ash–soil mixtures. Environmental Science & Technology, 11, 1194–201.

    Article  CAS  Google Scholar 

  • Gehrs, C. W., Shriner, D. S., & Herbes, S. E. (1979). Environmental health and safety implications of increased coal utilization. In M. A. Elliot (Ed.), Chemistry of coal utilization, second supplementary volume (pp. 2194–2219). New York: Wiley.

    Google Scholar 

  • Georgakopoulos, A., Filippidis, A., & Kassoli-Fournaraki, A. (1994). Morphology and trace element contents of the fly ash from Main and Northern lignite fields, Ptolemais, Greece. Fuel, 73, 1802–1804.

    Article  CAS  Google Scholar 

  • Georgakopoulos, A., Filippidis, A., Kassoli-Fournaraki, A., Fernández-Turiel, A., Llorens, J. F., & Mousty, F. (2002a). Leachability of major and trace elements of fly ash from Ptolemais Power Station, Northern Greece. Energy Sources, 24(2), 103–113.

    Article  CAS  Google Scholar 

  • Georgakopoulos, A., Filippidis, A., Kassoli-Fournaraki, A., Iordanidis, A., Fernández-Turiel, J. L., Llorens, J. F., et al. (2002b). Environmentally important elements in fly ashes and their leachates of the power stations of Greece. Energy Sources, 24(1), 83–91.

    Article  CAS  Google Scholar 

  • Güleç, N., Çancı, G. B., & Erler, A. (2001). Assessment of soil and water contamination around an ash-disposal site, a case study from the Seyıtomer coal-fired power plant in westeren Turkey. Environmental Geology, 40/3, 331–344.

    Google Scholar 

  • Hansen, L. D., & Fisher, G. L. (1980). Elemental distribution in coal fly ash particles. Environmental Science and Technology, 9–9, 862–868.

    Google Scholar 

  • Hansen, L. D., Silberman, D., Fisher, G. L., & Eatough, D. J. (1984). Chemical speciation of elements in stack-collected, respirable-size, coal fly ash. Environmental Science & Technology, 18, 181–186.

    Article  CAS  Google Scholar 

  • Hower, J. C, Robertson, J. D, Thomas, G. A, Wong, A. S, Schram, W. H, & Graham, U. M. (1996). Characterization of fly ash from Kentucky power plants. Fuel, 75, 403–411.

    Article  CAS  Google Scholar 

  • Hower, J. C, Trimble, A. S, Eble, C. F, Palmer, C. A, & Kolker A. (1999). Characterization of fly ash from low-sulfur and high-sulfur coal sources: partitioning of carbon and trace elements with particle size. Energy Sources, 21, 511–525.

    Article  CAS  Google Scholar 

  • Hulett, L. D., Weinberger, A. J., Northcutt, K. J., & Ferguson, M. (1980). Chemical species in fly ash from coal burning power plants. Science, 210, 1356–1358.

    Article  CAS  Google Scholar 

  • Inyang, H. I. (1992). Energy related waste materials in geotechnical systems: Durability and environmental considerations. In R. K. Singhal, A. K. Mehrotra, K. Fytas, & J. L. Colins (Eds.), Environmental issues and waste management in energy and minerals production (pp. 1157–1164). Rotterdam: Balkema.

    Google Scholar 

  • Kaakinen, J. W., Jorden, R. M., Lawasani, M. H., & West, R. E. (1975). Trace element behavior in coal-fired power plant. Environmental Science & Technology, 9–9, 862–868.

    Article  Google Scholar 

  • Kamon, M., Katsumi, T., & Sano, Y. (2000). MSW fly ash stabilized with coal ash for geotechnical application. Journal of Hazardous Materials, 76(2–3), 265–283.

    Article  CAS  Google Scholar 

  • Kim, A. G., & Kazonich, G. (2004). The silicate/non-silicate distribution of metals in fly ash and its effect on solubility. Fuel, 83, 2285–2292.

    Article  CAS  Google Scholar 

  • Kim, A. G, Kazonich, G., & Dahlberg, M. (2003). Relative solubility of cations in class fly ash. Environmental Science & Technology, 37, 4507–4511.

    Article  CAS  Google Scholar 

  • Kirby, C. S., & Rimstidt, J. D. (1994). Interaction of municipal solid waste ash with water. Environmental Science & Technology, 28, 443–451.

    Article  CAS  Google Scholar 

  • Klein, D. H., Andren, A. W., Carter, J. A., Emery, J. F., Feldman, C., Fulkerson, W., et al. (1975). Pathways of thirty seven trace elements through coal-fired power plant. Environmental Science and Technology, 9.10, 973–978.

    Article  Google Scholar 

  • Kukier, U., Ishak, C. F, Summer, M. E., & Miller W. P. (2003). Composition and element solubility of magnetic and non-magnetic fly ash fractions. Environmental Pollution, 123, 255–266.

    Article  CAS  Google Scholar 

  • Laumakis, T. M., Martin, J. P, & Kim, Y. C. (1996). Characterization of fly ash and other by-products as sorptive subgrades for environmental facility sites. In Kamon (Ed.), Environmental geotechnics (pp. 797–801). Rotterdam: Balkema.

    Google Scholar 

  • Mandal, A., & Sengupta, D. (2002). Characterization of fly ash from coal-based thermal power station at Kolaghat—Possible environmental hazards. Indian Journal of Environmental Protection, 22(8), 885–891.

    CAS  Google Scholar 

  • Martinez-Tarazona, M. R., & Spears, D. A. (1996). The fate of trace elements and bulk minerals in pulverized coal combustion in a power station. Fuel Processing Technology, 47, 79–92.

    Article  CAS  Google Scholar 

  • Mason, B. & Moore, C. B. (1982). Principles of geochemistry (4th ed). New York: Wiley.

    Google Scholar 

  • McMurphy, L. M., Biradar, D. P., Taets, C., & Rayburn, A. L. (1996). Differential effects of weathered coal fly ash and fly ash leachate on the maize genome. Achieves of Environmental Contamination and Toxicology, 31, 166–169.

    Article  CAS  Google Scholar 

  • NAPAP: (1992). National acid precipitation assessment program, report to Congress (Washington, DC, June 1993), p. 6.

  • Natusch, D. F. S, Wallace, J. R., & Evans, Jr C. A (1974). Toxic trace elements: preferential concentration in respirable particles. Science, 183, 202–204.

    Article  CAS  Google Scholar 

  • Senior, C. L., Bool, L. E., & Morency, J. R. (2000). Laboratory study of trace element vaporization from combustion of pulverized coal. Fuel Processing Technology, 63, 109–124.

    Article  CAS  Google Scholar 

  • Smith, R. D., Campbell, J. A., & Nielson, K. K. (1979). Concentrations depend upon particle size of volatized elements in fly ash. Environmental Science & Technology, 13, 527–535.

    Google Scholar 

  • Swain, D. J. (1990). Trace element in coal. Boston: Butterworth.

    Google Scholar 

  • Swaine, D. J. (1995). Environmental aspects of trace elements in coal. Dordrecht: Kluwer.

    Google Scholar 

  • Tazaki, K., Sahu, K. C., & Powell, M. (1989). Observations on the nature of fly ash particles. Fuel, 68, 727–734.

    Article  CAS  Google Scholar 

  • Tripodi, R. A. & Cheremissinof, P. N. (1980). Coal ash disposal solid waste impact. Westport: Technomica, pp. 11–26.

    Google Scholar 

  • US EPA. (1994). Energy efficiency and renewable energy; opportunities from Title IV of the Clean Air Act. US EPA 430-R-94-001 (Washington, DC, February 1994), p. 8.

  • Vassilev, S. V. (1994). Trace elements in solid waste products from coal burning at some. Bulgarian Thermoelectric Power Stations. Fuel, 73, 367–374.

    Article  CAS  Google Scholar 

  • Wangen, L. E., & Williams, M. D. (1978). Elemental deposition downwind of a coal-fired power plant. Water, Air, and Soil Pollution, 10, 33–44.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Baba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baba, A., Gurdal, G., Sengunalp, F. et al. Effects of leachant temperature and pH on leachability of metals from fly ash. A case study: Can thermal power plant, province of Canakkale, Turkey. Environ Monit Assess 139, 287–298 (2008). https://doi.org/10.1007/s10661-007-9834-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9834-8

Keywords

Navigation