Skip to main content
Log in

Photocatalytic Removal of Pharmaceuticals by Immobilization of TiO2 on Activated Carbon by LC–MS/MS Monitoring

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Pharmaceutically active compounds (PhACs), Diclofenac (DFC), Ibuprofen (IBU), and Paracetamol (PRC) are anti-inflammatory drugs commonly detected in wastewater. These micropollutants (pharmaceuticals) are not completely removed in conventional wastewater treatment plants. Therefore, alternative treatment methods are needed. In this context, the removal of three pharmaceuticals was investigated by the immobilized TiO2 method on activated carbon. Emphasis was given on the effect of pH (3–5-7 and 9) and catalyst loading (0.025–0.05–0.075–0.1 and 0.125 g/L). Tube reactor with UV lamp (254 nm) system was used in the study. Concentration of PhACs was analyzed by LCMS/MS. Characterization of AC/TiO2 composite was analyzed by XRD, Raman, and SEM. At the end of the study, the highest removal efficiencies were obtained for IBU and PRC at acidic pH while for DFC at neutral pH. It was determined that the removal efficiency increased as the dose of the catalyst increased for all three pharmaceuticals. The kinetic studies were fitted using the first order Langmuir–Hinshelwood model, obtaining a high accuracy based on R2 value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article (and its supplementary information files). No additional data is associated with this study.

Code Availability

Not applicable.

References

  • Alalm, M. G., Tawfik, A., & Ookawara, S. (2016). Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals. Journal of Environmental Chemical Engineering, 4(2), 1929–1937. https://doi.org/10.1016/j.jece.2016.03.023

  • Awfa, D., Ateia, M., Fujii, M., Johnson, M. S., & Yoshimura, C. (2018). Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: A critical review of recent literature. Water Research, 142, 26–45. https://doi.org/10.1016/j.watres.2018.05.036

  • Barbosa, M. O., Moreira, N. F. F., Ribeiro, A. R., Pereira, M. F. R., & Silva, A. M. T. (2016). Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Research, 94, 257–279. https://doi.org/10.1016/J.WATRES.2016.02.047

    Article  CAS  Google Scholar 

  • Chaudhari, S. M., Gonsalves, O. S., & Nemade, P. R. (2021). Enhanced photocatalytic degradation of Diclofenac with Agl/CeO2: A comparison with Mn, Cu and Ag-doped CeO2. Materials Research Bulletin, 143, 111463. https://doi.org/10.1016/j.materresbull.2021.111463

  • Cunha, D. L., da Silva, A. S. A., Coutinho, R., & Marques, M. (2022). Optimization of ozonation process to remove psychoactive drugs from two municipal wastewater treatment plants. Water, Air, & Soil Pollution, 233(2), 67. https://doi.org/10.1007/s11270-022-05541-9

    Article  CAS  Google Scholar 

  • Czech, B., & Buda, W. (2015). Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes/TiO2/SiO2 nanocomposites. Environmental Research, 137, 176–184. https://doi.org/10.1016/j.envres.2014.12.006

  • Daouk, S., Fleury-Souverain, S., & Daali, Y. (2015). Development of an LC-MS/MS method for the assessment of selected active pharmaceuticals and metabolites in wastewaters of a Swiss university hospital. Chimia, 69(11), 684–689. https://doi.org/10.2533/chimia.2015.684

    Article  CAS  Google Scholar 

  • Dimitriadou, S., Frontistis, Z., Petala, A., Bampos, G., & Mantzavinos, D. (2020). Carbocatalytic activation of persulfate for the removal of drug diclofenac from aqueous matrices. Catalysis Today, 355, 937–944. https://doi.org/10.1016/j.cattod.2019.02.025

    Article  CAS  Google Scholar 

  • Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., & He, Y. (2015). An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Research, 79, 128–146. https://doi.org/10.1016/j.watres.2015.04.038

    Article  CAS  Google Scholar 

  • Ebele, A. J., Abou-Elwafa Abdallah, M., & Harrad, S. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants, 3(1), 1–16. https://doi.org/10.1016/j.emcon.2016.12.004

    Article  Google Scholar 

  • Evgenidou, E. N., Konstantinou, I. K., & Lambropoulou, D. A. (2015). Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: A review. Science of the Total Environment, 505, 905–926. https://doi.org/10.1016/j.scitotenv.2014.10.021

    Article  CAS  Google Scholar 

  • Fawzi Suleiman Khasawneh, O., & Palaniandy, P. (2019). Photocatalytic degradation of pharmaceuticals using TiO 2 based nanocomposite catalyst-review. Civil and Environmental Engineering Reports, 29(3), 1–33. https://doi.org/10.2478/ceer-2019-0021

    Article  Google Scholar 

  • Garcia-Ivars, J., Martella, L., Massella, M., Carbonell-Alcaina, C., Alcaina-Miranda, M.-I., & Iborra-Clar, M.-I. (2017). Nanofiltration as tertiary treatment method for removing trace pharmaceutically active compounds in wastewater from wastewater treatment plants. Water Research, 125, 360–373. https://doi.org/10.1016/j.watres.2017.08.070

    Article  CAS  Google Scholar 

  • Gerasymchuk, Y., Wędzyńska, A., & Stręk, W. (2021). Liquid “syngas” based on supercritical water and graphite oxide/TiO2 composite as catalyst for CO2 to organic conversion. Catalysis Letters, (Early Access). https://doi.org/10.1007/s10562-021-03858-4

  • Gómez-Canela, C., Sala-Comorera, T., Pueyo, V., Barata, C., & Lacorte, S. (2019). Analysis of 44 pharmaceuticals consumed by elderly using liquid chromatography coupled to tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 168, 55–63. https://doi.org/10.1016/j.jpba.2019.02.016

    Article  CAS  Google Scholar 

  • Gopalakrishnan, Y., Al-Gheethi, A., Mohamed, R., Arifin, N. H., & Salleh, N. A. (2021). Green ZnO nanoparticles photocatalyst for efficient BR51 degradation: Kinetics and mechanism study. Environmental Progress and Sustainable Energy, 40:e13559. https://doi.org/10.1002/ep.13559

  • Gu, Y., Yperman, J., Carleer, R., D’Haen, J., Maggen, J., Vanderheyden, S., et al. (2019). Adsorption and photocatalytic removal of Ibuprofen by activated carbon impregnated with TiO2 by UV–Vis monitoring. Chemosphere, 217, 724–731. https://doi.org/10.1016/j.chemosphere.2018.11.068

  • He, Y., Sutton, N. B., Rijnaarts, H. H. H., & Langenhoff, A. A. M. (2016). Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation. Applied Catalysis B: Environmental, 182(Complete), 132–141. https://doi.org/10.1016/j.apcatb.2015.09.015

    Article  CAS  Google Scholar 

  • Hinojosa Guerra, M. M., Oller Alberola, I., Malato Rodriguez, S., Agüera López, A., Acevedo Merino, A., & Quiroga Alonso, J. M. (2019). Oxidation mechanisms of amoxicillin and paracetamol in the photo-Fenton solar process. Water Research, 156, 232–240. https://doi.org/10.1016/j.watres.2019.02.055

    Article  CAS  Google Scholar 

  • Ji, L., Zhang, Y., Miao, S., Gong, M., & Liu, X. (2017). In situ synthesis of carbon doped TiO2 nanotubes with an enhanced photocatalytic performance under UV and visible light. Carbon, 125, 544–550. https://doi.org/10.1016/j.carbon.2017.09.094

    Article  CAS  Google Scholar 

  • Kalyva, M. (2017). Fate of pharmaceuticals in the environment -A review. Sweeden. https://doi.org/10.1016/j.ica.2010.12.018

    Article  Google Scholar 

  • Kanakaraju, D., Glass, B. D., & Oelgemöller, M. (2018). Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. Journal of Environmental Management, 219, 189–207. https://doi.org/10.1016/j.jenvman.2018.04.103

    Article  CAS  Google Scholar 

  • Kosek, K., Luczkiewicz, A., Fudala-Książek, S., Jankowska, K., Szopińska, M., Svahn, O., et al. (2020). Implementation of advanced micropollutants removal technologies in wastewater treatment plants (WWTPs) - Examples and challenges based on selected EU countries. Environmental Science and Policy, 112(April), 213–226. https://doi.org/10.1016/j.envsci.2020.06.011

    Article  CAS  Google Scholar 

  • Krishnan, S., Rawindran, H., Sinnathambi, C. M., & Lim, J. W. (2017). Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants. IOP Conference Series: Materials Science and Engineering, 206:012089. https://doi.org/10.1088/1757-899X/206/1/012089

  • Kristensen, D. M., Desdoits-Lethimonier, C., Mackey, A. L., Dalgaard, M. D., De Masi, F., Munkbøl, C. H., et al. (2018). Ibuprofen alters human testicular physiology to produce a state of compensated hypogonadism. Proceedings of the National Academy of Sciences, 115(4), E715–E724. https://doi.org/10.1073/pnas.1715035115

    Article  CAS  Google Scholar 

  • Lado Ribeiro, A. R., Moreira, N. F. F., Li Puma, G., & Silva, A. M. T. (2019). Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chemical Engineering Journal, 363(October 2018), 155–173. https://doi.org/10.1016/j.cej.2019.01.080

    Article  CAS  Google Scholar 

  • Lin, L., Wang, H., & Xu, P. (2017). Immobilized TiO2-reduced graphene oxide nanocomposites on optical fibers as high performance photocatalysts for degradation of pharmaceuticals. Chemical Engineering Journal, 310, 389–398. https://doi.org/10.1016/j.cej.2016.04.024

  • Loghambal, S., Catherine, A. J. A., & Subash, S. V. (2018). Mathematics and its applications analysis of Langmuir-Hinshelwood kinetics model for photocatalytic degradation of aqueous Direct Blue 71 through analytical expression. International Journal of Mathematics and Its Applications, 6, 903–913.

    Google Scholar 

  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., et al. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473–474, 619–641. https://doi.org/10.1016/J.SCITOTENV.2013.12.065

    Article  Google Scholar 

  • Malallah Rzaij J., & Mohsen Abass, A. (2020). Review on: TiO2 thin film as a metal oxide gas sensor. Journal of Chemical Reviews, 2(2), 114–121. https://doi.org/10.33945/sami/jcr.2020.2.4

  • Maryam, B., Buscio, V., Odabasi, S. U., & Buyukgungor, H. (2020). A study on behavior, interaction and rejection of Paracetamol, Diclofenac and Ibuprofen (PhACs) from wastewater by nanofiltration membranes. Environmental Technology and Innovation, 18, 100641. https://doi.org/10.1016/j.eti.2020.100641

    Article  Google Scholar 

  • Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Research, 139, 118–131. https://doi.org/10.1016/j.watres.2018.03.042

    Article  CAS  Google Scholar 

  • Mirzaei, A., Chen, Z., Haghighat, F., & Yerushalmi, L. (2016). Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: A review. Sustainable Cities and Society, 27, 407–418. https://doi.org/10.1016/j.scs.2016.08.004

    Article  Google Scholar 

  • Mohd, N., Sudirman, M. F. A. E., & Draman, S. F. S. (2015). Isotherm and thermodynamic study of paracetamol removal in aqueous solution by activated carbon. ARPN Journal of Engineering and Applied Sciences, 10(20), 9516–9520.

    CAS  Google Scholar 

  • Murgolo, S., Petronella, F., Ciannarella, R., Comparelli, R., Agostiano, A., Curri, M. L., & Mascolo, G. (2015). UV and solar-based photocatalytic degradation of organic pollutants by nano-sized TiO2 grown on carbon nanotubes. Catalysis Today, 240, 114–124. https://doi.org/10.1016/j.cattod.2014.04.021

  • Nosrati, R., Olad, A., & Maryami, F. (2018). The use of graphite/TiO2 nanocomposite additive for preparation of polyacrylic based visible-light induced antibacterial and self-cleaning coating. Research on Chemical Intermediates, 44(10), 6219–6237. https://doi.org/10.1007/s11164-018-3486-x

  • Oh, S., Shin, W. S., & Kim, H. T. (2016). Effects of pH, dissolved organic matter, and salinity on ibuprofen sorption on sediment. Environmental Science and Pollution Research, 23(22), 22882–22889. https://doi.org/10.1007/s11356-016-7503-6

    Article  CAS  Google Scholar 

  • Orha, C., Pode, R., Manea, F., Lazau, C., & Bandas, C. (2017). Titanium dioxide-modified activated carbon for advanced drinking water treatment. Process Safety and Environmental Protection, 108, 26–33. https://doi.org/10.1016/j.psep.2016.07.013

    Article  CAS  Google Scholar 

  • Papageorgiou, M., Kosma, C., & Lambropoulou, D. (2016). Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Science of the Total Environment, 543, 547–569. https://doi.org/10.1016/J.SCITOTENV.2015.11.047

    Article  CAS  Google Scholar 

  • Peñas-Garzón, M., Gómez-Avilés, A., Belver, C., Rodriguez, J. J., & Bedia, J. (2020). Degradation pathways of emerging contaminants using TiO2-activated carbon heterostructures in aqueous solution under simulated solar light. Chemical Engineering Journal, 392(March), 124867. https://doi.org/10.1016/j.cej.2020.124867

  • Pereira, A. M. P. T., Silva, L. J. G., Meisel, L. M., Lino, C. M., & Pena, A. (2015). Environmental impact of pharmaceuticals from Portuguese wastewaters: Geographical and seasonal occurrence, removal and risk assessment. Environmental Research, 136, 108–119. https://doi.org/10.1016/j.envres.2014.09.041

    Article  CAS  Google Scholar 

  • Pino-Sandoval, D. A., Hinojosa-Reyes, L., Guzmán-Mar, J. L., Murillo-Sierra, J. C., & Hernández-Ramírez, A. (2022). Solar photocatalysis for degradation of pharmaceuticals in hospital wastewater: Influence of the type of catalyst, aqueous matrix, and toxicity evaluation. Water, Air, and Soil Pollution, 233:14. https://doi.org/10.1007/s11270-021-05484-7

  • Salimi, M., Esrafili, A., Gholami, M., Jonidi Jafari, A., Rezaei Kalantary, R., Farzadkia, M., et al. (2017). Contaminants of emerging concern: A review of new approach in AOP technologies. Environmental Monitoring and Assessment, 189:414. https://doi.org/10.1007/s10661-017-6097-x

  • Simon, E., Duffek, A., Stahl, C., Frey, M., Scheurer, M., Tuerk, J., et al. (2022). Biological effect and chemical monitoring of watch list substances in European surface waters: Steroidal estrogens and diclofenac – Effect-based methods for monitoring frameworks. Environment International, 159, 107033. https://doi.org/10.1016/j.envint.2021.107033

    Article  CAS  Google Scholar 

  • Sousa, J. C. G., Ribeiro, A. R., Barbosa, M. O., Pereira, M. F. R., & Silva, A. M. T. (2018). A review on environmental monitoring of water organic pollutants identified by EU guidelines. Journal of Hazardous Materials, 344, 146–162. https://doi.org/10.1016/J.JHAZMAT.2017.09.058

    Article  CAS  Google Scholar 

  • Srikanth, B., Goutham, R., Badri Narayan, R., Ramprasath, A., Gopinath, K. P., & Sankaranarayanan, A. R. (2017). Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. Journal of Environmental Management, 200, 60–78. https://doi.org/10.1016/j.jenvman.2017.05.063

    Article  CAS  Google Scholar 

  • Vaiano, V., Sacco, O., & Matarangolo, M. (2018). Photocatalytic degradation of paracetamol under UV irradiation using TiO2-graphite composites. Catalysis Today, 315, 230–236. https://doi.org/10.1016/j.cattod.2018.02.002

  • Yuan, C., Hung, C.-H., Li, H.-W., & Chang, W.-H. (2016). Photodegradation of ibuprofen by TiO2 co-doping with urea and functionalized CNT irradiated with visible light – Effect of doping content and pH. Chemosphere, 155, 471–478. https://doi.org/10.1016/j.chemosphere.2016.04.055

  • Zeng, X., Sun, X., Meng, Y., Yu, N., & Liu, J. (2021). Photodegradation of sulfamethoxypyridazine in UV/Co(II)/peroxymonosulfate system: Kinetics, influencing factors, degradation pathways, and toxicity assessment. Water, Air, and Soil Pollution, 232:410. https://doi.org/10.1007/s11270-021-05351-5

  • Zhang, L., Liu, Y., & Fu, Y. (2020). Degradation kinetics and mechanism of diclofenac by UV/peracetic acid. RSC Advances, 10(17), 9907–9916. https://doi.org/10.1039/d0ra00363h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Ondokuz Mayis University Blacksea Advanced Technology Research and Application Center (KİTAM) for conducting the SEM and LCMS/MS analysis.

Author information

Authors and Affiliations

Authors

Contributions

Sevde Ustun Odabasi: methodology, conceptualization, writing — review & editing. Issam Boudraa: experiment, methodology, writing — review & editing. Rukiye Aydin: LCMS-MS analysis. Hanife Buyukgungor: supervision, writing — review & editing.

Corresponding author

Correspondence to Sevde Üstün Odabaşi.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Üstün Odabaşi, S., Boudraà, İ., Aydin, R. et al. Photocatalytic Removal of Pharmaceuticals by Immobilization of TiO2 on Activated Carbon by LC–MS/MS Monitoring. Water Air Soil Pollut 233, 111 (2022). https://doi.org/10.1007/s11270-022-05579-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05579-9

Keywords

Navigation