Skip to main content
Log in

Multi-Residual Determination of Multi-Class Pesticides in Groundwater by Direct Immersion Solid-Phase Microextraction with Gas Chromatography-Selected Ion Monitoring Mass Spectrometry (GC–MS/SIM) Detection

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This paper describes a simple, quick, and solvent-free multi-residue method to determine 90 pesticides in groundwater samples from 30 different chemical groups. The extraction was carried out by solid-phase microextraction in direct immersion mode (DI-SPME) using a polydimethylsiloxane/divinylbenzene fiber (65 µm thickness) followed by GC–MS detection. The main parameters affecting the DI-SPME process were studied in detail: temperature, NaCl addition, stirring rate, and extraction time. The validation parameters as linearity, precision (repeatability and reproducibility), and accuracy were evaluated. The limits of quantification (LOQs) were in the range of 0.009–0.976 µg L−1. The analytes recoveries in groundwater samples varied from 60 to 120% and were appropriate for this type of water. The validated analytical method was successfully applied to the analysis of groundwater from wells located in agricultural sites in the municipality of Cadereyta Jimenez in Nuevo Leon, Mexico. The pesticides p, p’-DDT, bifenthrin, 2,4’-D ethylhexyl ester, and aldrin were below the LOQs in 73% of the analyzed samples. Oxyfluorfen and fenoxycarb were quantified at 0.08 and 0.2 µg L−1, respectively. Fenoxycarb was above the maximum allowable concentration of 0.1 µg L−1 for drinking water established by the European Union.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Authors can confirm that all relevant data are included in the article and/or its supplementary information files.

References

  • Alavanja, M. C. R., Hoppin, J. A., & Kamel, F. (2004). Health effects of chronic pesticide exposure: Cancer and neurotoxicity. Annual Review of Public Health, 25, 155–197.

    Article  Google Scholar 

  • Bagheri, H., Ayazi, Z., & Babanezhad, E. (2010). A sol-gel-based amino functionalized fiber for immersed solid-phase microextraction of organophosphorus pesticides from environmental samples. Microchemical Journal, 94, 1–6.

    Article  CAS  Google Scholar 

  • Casas, V., Llompart, M., Garcia-Jares, C., Cela, R., & Dagnac, T. (2007). Effects of sample pretreatment and storage conditions in the determination of pyrethroids in water samples by solid-phase microextraction and gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 387, 1841–1849.

    Article  CAS  Google Scholar 

  • CONAGUA. (2015) Actualización de la disponibilidad media anual de agua en el acuífero Citrícola Norte (1912), Estado de Nuevo León. Diario Oficial de la Federación.

  • da Silva Sousa, J., do Nascimento, H. O., de Oliveira Gomes, H., & do Nascimento, R. F. (2021). Pesticide residues in groundwater and surface water: recent advances in solid-phase extraction and solid-phase microextraction sample preparation methods for multiclass analysis by gas chromatography-mass spectrometry. Microchemical Journal, 168, 106359.

    Article  Google Scholar 

  • de Souza, C., Dutra, D. R., Assalin, M. R., Scanagatta Dos Santos, R., de Carvalho, G., & Dores, E. F. (2020). Method validation for multiresidue pesticide determination in riverbed sediment using QuEChERS and GC-MS/MS and application in samples from an important watershed in Central Western Brazil. International Journal of Environmental Analytical Chemistry, 100(13), 1536–1548.

    Article  Google Scholar 

  • Dolan, T., Howsam, P., Parsons, D. J., & Whelan, M. J. (2013). Is the EU qrinking water directive standard for pesticides in drinking water consistent with the precautionary principle? Environmental Science and Technology, 47, 4999–5006.

    Article  CAS  Google Scholar 

  • Domínguez, I., Romero González, R., Arrebola Liébanas, F. J., Martínez Vidal, J. L., & Garrido Frenich, A. (2016). Automated and semi-automated extraction methods for GC–MS determination of pesticides in environmental samples. Trends in Environmental Analytical Chemistry, 12, 1–12.

    Article  Google Scholar 

  • Ecobichon, D. J. (2001). Pesticide use in developing countries. Environmental Health Perspectives, 160, 27–33.

    CAS  Google Scholar 

  • European Commission. (1998) Council Directive 98/83/EC, Ammended by EC 2015/1787 of 6 October 2015. 31, 1–32.

  • FAO (1997) Lucha Contra la Contaminación Agrícola de los Recursos Hídricos. (Food & Agriculture Organization of the United Nations

  • Filho, A. M., dos Santos, F. N., & de Pereira, P. A. P. (2010). Development, validation and application of a method based on DI-SPME and GC-MS for determination of pesticides of different chemical groups in surface and groundwater samples. Microchemical Journal, 96, 139–145.

    Article  Google Scholar 

  • Górecki, T., Yu, X., & Pawliszyn, J. (1999). Theory of analyte extraction by selected porous polymer SPME fibres. The Analyst, 124(5), 643–649.

    Article  Google Scholar 

  • Hernández-Antonio, A., & Hansen, A. M. (2011). Uso de plaguicidas en dos zonas agrícolas de méxico y evaluación de la contaminación de agua y sedimentos. Revista Internacional De Contaminación Ambiental, 27, 115–127.

    Google Scholar 

  • Hernández-Romero, A. H., Tovilla-Hernández, C., Malo, E. A., & Bello-Mendoza, R. (2004). Water quality and presence of pesticides in a tropical coastal wetland in southern Mexico. Marine Pollution Bulletin, 48, 1130–1141.

    Article  Google Scholar 

  • Jabali, Y., Millet, M., & El-Hoz, M. (2020). Spatio-temporal distribution and ecological risk assessment of pesticides in the water resources of Abou Ali River. Northern Lebanon, Environmental Science and Pollution Research, 27(15), 17997–18012.

    Article  CAS  Google Scholar 

  • Lambropoulou, D. A., & Albanis, T. A. (2001). Optimization of headspace solid-phase microextraction conditions for the determination of organophosphorus insecticides in natural waters. Journal of Chromatography A, 922, 243–255.

    Article  CAS  Google Scholar 

  • Martínez, C., Ramírez, N., Gómez, V., Pocurull, E., & Borrull, F. (2013). Simultaneous determination of 76 micropollutants in water samples by headspace solid phase microextraction and gas chromatography–mass spectrometry. Talanta, 116, 937–945.

    Article  Google Scholar 

  • McManus, S.-L.L., Coxon, C. E., Richards, K. G., & Danaher, M. (2013). Quantitative solid phase microextraction – Gas chromatography mass spectrometry analysis of the pesticides lindane, heptachlor and two heptachlor transformation products in groundwater. Journal of Chromatography A, 1284, 1–7.

    Article  CAS  Google Scholar 

  • Musteata, F. M., & Pawliszyn, J. (2007). Bioanalytical applications of solid-phase microextraction. TrAC Trends in Analytical Chemistry, 26, 36–45.

    Article  CAS  Google Scholar 

  • Norma Oficial Mexicana, NOM-127-SSA1–1994, Salud ambiental. (2000). Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. (2000). Available at: http://www.dof.gob.mx/nota_detalle.php?codigo=2063863&fecha=31/12/1969. (Accessed: 11th November 2018)

  • Oller-Arlandis, V., & Sanz-Valero, J. (2012). Cáncer por contaminación química del agua de consumo humano en menores de 19 años: Una revisión sistemática. Revista Panamericana De Salud Pública, 32, 435–443.

    Article  Google Scholar 

  • Parh, S. (1996). Pesticides by solid-phase microextraction. Results of a round robin test. The Analyst, 121, 1381–1386.

    Article  Google Scholar 

  • Pawliszyn, J. (2012). Theory of solid-phase microextraction. In J. Pawliszyn (Ed.), Handbook of Solid Phase Microextraction (pp. 13–59). Elsevier.

    Chapter  Google Scholar 

  • Pragst, F. (2007). Application of solid-phase microextraction in analytical toxicology. Analytical and Bioanalytical Chemistry, 388(7), 1393–1414.

    Article  CAS  Google Scholar 

  • Pérez, M. A., Navarro, H., & Miranda, E. (2013). Residuos de plaguicidas en hortalizas. Revista Internacional De Contaminación Ambiental, 29, 45–64.

    Google Scholar 

  • Pesticides Properties Data Base. (2018). University of Hertfordshire. Available at: https://sitem.herts.ac.uk/aeru/footprint/es/index.htm. (Accessed: 20th April 2018).

  • Piri-Moghadam, H., Ahmadi, F., & Pawliszyn, J. (2016). A critical review of solid phase microextraction for analysis of water samples. TrAC Trends in Analytical Chemistry, 85, 133–143.

    Article  CAS  Google Scholar 

  • Robles-Molina, J., Gilbert-López, B., García-Reyes, J. F., & Molina-Díaz, A. (2013). Gas chromatography triple quadrupole mass spectrometry method for monitoring multi-class organic pollutants in Spanish sewage treatment plants effluents. Talanta, 111, 196–205.

    Article  CAS  Google Scholar 

  • Robles-Molina, J., Gilbert-López, B., García-Reyes, J. F., & Molina-Díaz, A. (2013). Comparative evaluation of liquid–liquid extraction, solid-phase extraction and solid-phase microextraction for the gas chromatography–mass spectrometry determination of multi-class priority organic contaminants in wastewater. Talanta, 117, 382–391.

    Article  CAS  Google Scholar 

  • Rodríguez-Lafuente, A., Piri-Moghadam, H., Lord, H. L., Obal, T., & Pawliszyn, J. (2016). Inter-laboratory validation of automated SPME-GC/MS for determination of pesticides in surface and ground water samples: Sensitive and green alternative to liquid–liquid extraction. Water Quality Research Journal, 51, 331–343.

    Article  Google Scholar 

  • Sauret-Szczepanski, N., Mirabel, P., & Wortham, H. (2006). Development of an SPME e GC e MS / MS method for the determination of pesticides in rainwater : Laboratory and field experiments. Environmental Pollution, 139, 133–142.

    Article  CAS  Google Scholar 

  • Secretaría de Agrícultura y Recursos Hidráulicos. (1991). Relación de plaguicidas prohibidos para su importación, fabricación, formulación, comercialización y uso en México. Diario Oficial de la Federación (1991). Available at: dof.gob.mx/nota_detalle.php?codigo=4739545&fecha=19/08/1991. (Accessed: 19th September 2018)

  • Silva Filho, C. F., Emídio, E. S., & Dórea, H. S. (2011). Solid-phase microextraction for determination of anilino-pyrimidine, dimethylcarbamate and thiadiazine pesticides in irrigation project surface water. Journal of the Brazilian Chemical Society, 22, 1371–1378.

    Article  CAS  Google Scholar 

  • Suárez-Jacobo, A., Alcantar-Rosales, V. M., Alonso-Segura, D., Heras-Ramírez, M., Elizarragaz-De-La-Rosa, D., Lugo-Melchor, O., & Gaspar-Ramirez, O. (2017). Pesticide residues in orange fruit from citrus orchards in Nuevo Leon State, Mexico. Food Additives & Contaminants: Part b., 10, 192–199.

    Article  Google Scholar 

  • Tankiewicz, M., Morrison, C., & Biziuk, M. (2013). Multi-residue method for the determination of 16 recently used pesticides from various chemical groups in aqueous samples by using DI-SPME coupled with GC-MS. Talanta, 107, 1–10.

    Article  CAS  Google Scholar 

  • Tobergte, D. R., & Curtis, S. (2013). How will energy demand develop in the developing world? Journal of Chemical Information and Modeling, 53(9), 1689–1699.

    Google Scholar 

  • US EPA. Environmental chemistry methods (ECM). (2018). Available at: https://www.epa.gov/pesticide-analytical-methods/environmental-chemistry-methods-ecm-index-0-9. (Accessed: 5th May 2018)

  • Valenzuela, E. F., de Paula, F. G. F., Teixeira, A. P. C., Menezes A. P. C., & Cardeal Z. L. (2020) A new carbon nanomaterial solid-phase microextraction to pre-concentrate and extract pesticides in environmental water. Talanta, 217, 121011.

  • Van Der Werf, H. M. G. (1996). Assessing the impact of pesticides on the environment. Agriculture, Ecosystems & Environment, 60, 81–96.

    Article  Google Scholar 

Download references

Funding

This work was funded by a grant from the Consejo Nacional de Ciencia y Tecnología (CONACYT), México, PDCPN-2015, No. 505 and PAICYT program of Universidad Autónoma de Nuevo León, México. The authors thank the support from the Red Temática de Toxicología de Plaguicidas—CONACYT, 280045. D. Elizarragaz thanks CONACYT (scholarship number 443152) for the economic support to pursue his Ph.D. studies. A special thanks to Víctor Manuel Alcantar Rosales for the analysis of the samples and training in the use of the analytical instruments.

Author information

Authors and Affiliations

Authors

Contributions

Dalaú Elizarragaz-de la Rosa: performed the experimental research, wrote a first draft of the manuscript, and designed the figures.

Jorge L. Guzmán-Mar: provided critical feedback and helped shape the research, and reviewer manuscript.

Edgar Arturo Salas-Espinos: characterized the samples by instrumental techniques and contributed to the interpretation of the results.

María Elena Heras-Ramírez: characterized the samples by instrumental techniques and contributed to the interpretation of the results.

Laura Hinojosa-Reyes: provided critical feedback and helped shape the research, statistical analysis, and reviewer manuscript.

Octavio Gaspar-Ramírez: helped to supervise the project and to analyze the results, verified the analytical method, and reviewed the writing manuscript.

Edgar Jocsan Ruiz-Ruiz: was involved in planning, supervised the project, wrote the manuscript.

Corresponding authors

Correspondence to Octavio Gaspar-Ramírez or Edgar Jocsan Ruiz-Ruiz.

Ethics declarations

Human and Animal Rights Consent

No animal or human studies were conducted.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file (DOCX 461 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elizarragaz-de la Rosa, D., Guzmán-Mar, J.L., Salas-Espinosa, E.A. et al. Multi-Residual Determination of Multi-Class Pesticides in Groundwater by Direct Immersion Solid-Phase Microextraction with Gas Chromatography-Selected Ion Monitoring Mass Spectrometry (GC–MS/SIM) Detection. Water Air Soil Pollut 233, 76 (2022). https://doi.org/10.1007/s11270-022-05555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05555-3

Keywords

Navigation