Skip to main content
Log in

Batch Kinetic Studies of Pharmaceutical Compounds Removal Using Activated Sludge Obtained from a Membrane Bioreactor

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Pharmaceutical compounds are emerging pollutants found in the wastewater, which have recently drawn general concerns due to their potential to affect the quality of water bodies, ecosystems, and human health. The purpose of this paper was to assess the removal mechanisms sorption and biodegradation of two lipid regulator pharmaceutical compounds, clofibric acid (CLA) and gemfibrozil (GFZ), through batch experiments using activated sludge obtained from a membrane bioreactor (MBR). As a result, biodegradation was the main removal mechanism in activated sludge for both pharmaceutical compounds, followed by sorption and desorption. The highest removals of CLA and GFZ were 72 and 97%, respectively. According to results from the adsorption test, the CLA and GFZ have a strong adsorption capacity on inactivated biomass. The solid-water distribution coefficient (Kd) for CLA was 8.5 L·g−1 and for GFZ was 0.75 L·g−1. The value for Monod constants qmax was 0.6 h−1 for both pharmaceutical compounds. The affinity constant Ks value of CLA (4.37 µg.L−1) was higher than the Ks value of GFZ (0.35 µg·L−1). COD and NH4–N removals were 99 and 97%, respectively, during the kinetic test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adeleye, A., Xue, J., Zhao, Y., Taylor, A., Zenobio, J., Sun, Y., Han, Z., Salawu, O., Zhu, Y. (2022) Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. J. Hazard. Mater., 425 (Part B), 127284.

  • Ahmed, S., Mofijur, M., Nuzhat, S., Chowdhury, T., Rafa, N., Uddin, A., Inayat, A., Mahlia, T., Ong, C., Chia, W. and Show, P. (2021) Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater., 416, 125912.

  • Arya, V., Philip, L., & P. and Bhallamundi, S.M. (2016). Performance of suspended and attached growth bioreactors for the removal of cationic and anionic pharmaceuticals. Chemical Engineering Journal, 284, 1295–1307.

    Article  CAS  Google Scholar 

  • Barron, L., Havel, J., Purcell, M., Szpak, M., Kelleher, B., & Paull, B. (2009). Predicting sorption of pharmaceuticals and personal care products onto soil and digested sludge using artificial neural networks. The Analyst, 134, 663–670.

    Article  CAS  Google Scholar 

  • Camacho-Muñoz, D., Martín, J., Santos, J., Aparicio, I., & Alonso, E. (2014). Concentration evolution of pharmaceutically active compounds in raw urban and industrial wastewater. Chemosphere, 111, 70–79.

    Article  Google Scholar 

  • Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N., & Kroiss, H. (2005). Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Research, 39, 4797–4807.

    Article  CAS  Google Scholar 

  • D’Alessio, M., Onanong, S., Snow, D., & Ray, C. (2018). Occurrence and removal of pharmaceutical compounds and steroids at four wastewater treatment plants in Hawai’i and their environmental fate. Science of the Total Environment, 631–632, 1360–1370.

    Article  Google Scholar 

  • Estrada-Arriaga, E. B., & Mijaylova, N. P. (2010). A comparison of biodegradation kinetics models applied to estrogen removal with nitrifying activated sludge. Water Science and Technology, 69(2), 2183–2189.

    Article  Google Scholar 

  • Estrada-Arriaga, E. B., & Mijaylova, P. (2011). Calculation methods to perform mass balance of endocrine disrupting compounds in a submerged membrane bioreactor: Fate and distribution of estrogens during the biological treatment. Water Science and Technology, 64(11), 2158–2168.

    Article  CAS  Google Scholar 

  • Estrada-Arriaga, E. B., Cortes-Muñoz, J. E., Gonzalez-Herrera, A., Calderon-Molgora, C. G., de Lourdes Rivera-Huerta, M., Ramirez-Camperos, E., Montellano-Palacios, L., Gelover-Santiago, S. L., Perez-Castrejon, S., Cardoso-Vigueros, L., Martin-Dominguez, A., & Garcia-Sanchez, L. (2016). Assessment of full scale biological nutrient removal systems upgraded with physico-chemical processes for the removal of emerging pollutants present in wastewaters from Mexico. Science of the Total Environment, 571, 1172–1182.

    Article  CAS  Google Scholar 

  • Fabbri, D., Maurino, V., Minella, M., Minero, C., & Vione, D. (2017). Modelling the photochemical attenuation pathways of the fibrate drug gemfibrozil in surface waters. Chemosphere, 170, 124–133.

    Article  CAS  Google Scholar 

  • Falas, P., Bailon-Dhumez, A., Andersen, H. R., Ledin, A., & la Cour Jansen, J. (2012). Suspended biofilm carriers and activated sludge removal of acid pharmaceuticals. Water Research, 46, 1167–1175.

    Article  CAS  Google Scholar 

  • Fernandez-Fontaina, E., Gomes, I., Aga, D., Omil, F., Lema, J., & Carballa, M. (2016). Biotransformation of pharmaceuticals under nitrification, nitration and heterotrophic conditions. Science of the Total Environment, 541, 1439–1447.

    Article  CAS  Google Scholar 

  • Gibson, R., Becerril-Bravo, E., Silva-Castro, V., & Jiménez-Cisneros, B. (2007). Determination of acidic pharmaceuticals and potential endocrine disrupting compounds in wastewaters and spring waters by selective elution and determination by gas chromatography-mass spectrometry. Journal of Chromatography A, 1169, 31–39.

    Article  CAS  Google Scholar 

  • Gracia-Lor, E., Sancho, J. V., Serrano, R., & Hernández, F. (2012). Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia. Chemosphere, 87(5), 453–462.

    Article  CAS  Google Scholar 

  • Grenni, P., Patrolecco, L., Ademollo, N., Tolomei, A., & Caracciolo, A. B. (2013). Degradation of Gemfibrozil and Naproxen in river water ecosystem. Microchemical Journal, 107, 158–164.

    Article  CAS  Google Scholar 

  • Gu, Y., Huang, J., Zeng, G., Shi, L., Shi, Y., & Yi, K. (2018). Fate of pharmaceuticals during membrane bioreactor treatment: Status and perspectives. Bioresource Technology, 268, 733–748.

    Article  CAS  Google Scholar 

  • Gutierrez-Macias, T., & Mijaylova, N. P. (2015). Clofibric acid and gemfibrozil removal in membrane bioreactors. Water Science and Technology, 71(8), 1143–1150.

    Article  CAS  Google Scholar 

  • Hamid, H., & Eskicioglu, C. (2012). Fate of estrogenic hormones in wastewater and sludge treatment: A review of properties and analytical detection techniques in sludge matrix. Water Research, 46, 5813–5833.

    Article  CAS  Google Scholar 

  • Hua, W. Y., Bennett, E. R., Maio, X. S., Metcalfe, C. D., & Letcher, R. L. (2006). Seasonality effects on pharmaceuticals and S-triazine herbicides in wastewater effluent and surface water from the Canadian side of the upper Detroit River. Environmental Toxicology and Chemistry, 25, 2356–2365.

    Article  CAS  Google Scholar 

  • Joss, A., Andersen, H., Ternes, T., Richle, P., & Siegrist, H. (2004). Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: Consequences for plant optimization. Environmental Science and Technology, 38, 3047–3055.

    Article  CAS  Google Scholar 

  • Joss, A., Zabczynski, S., Göbel, A., Hoffmann, B., Löffler, D., McArdell, C., Ternes, T., Thomsen, A., & Siegrist, H. (2006). Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme. Water Research, 40, 1686–1696.

    Article  CAS  Google Scholar 

  • Khan, H., Rehman, M. and Malik, R. (2020) Fate and toxicity of pharmaceuticals in water environment: An insight on their occurrence in South Asia. J. Environ. Manage., 270. 111030.

  • Kimura, K., Hara, H., & Watanabe, Y. (2007). Elimination of selected acid pharmaceuticals from municipal wastewater by an activated sludge system and membrane bioreactor. Environmental Science and Technology, 41, 3708–3714.

    Article  CAS  Google Scholar 

  • Köck, M., Villagrasa, M., López de Alda, M., Céspedes-Sánchez, R., Ventura, F., & Barceló, D. (2013). Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Science of the Total Environment, 458, 466–476.

    Article  Google Scholar 

  • Kolpin, D. W., Skopec, M., Meyer, M. T., Furlong, E. T., & Zaugg, S. D. (2004). Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions. Science of the Total Environment, 328, 119–129.

    Article  CAS  Google Scholar 

  • Lu, J., Zhang, Y., Wu, J., Wang, J. and Cai, Y. (2020) Fate of antibiotic resistence genes in reclaimed water system with integrated membrane process. Journal of Hazardous Materials. 382. 121025.

  • Martín, J., Camacho-Munoz, D., Santos, J. L., Aparicio, I., & Alonso, E. (2012). Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: Removal and ecotoxicological impact of wastewater discharges and sludge disposal. Journal of Hazardous Materials, 239–240, 40–47.

    Article  Google Scholar 

  • Martínez-Alcalá, I., Guillén Navarro, J. M., & Fernández-López, C. (2017). Pharmaceutical biological degradation, sorption and mass balance determination in a conventional activated-sludge wastewater treatment plant from Murcia. Spain. Chem. Eng. J., 316, 332–340.

    Article  Google Scholar 

  • Mimeault, C., Trudeau, V., & Moon, W. (2006). Waterborne gemfibrozil challenges the hepatic antioxidant defense system and down-regulates peroxisome proliferator-activated receptor beta (PPAR) mRNA levels in male goldfish (Carassius auratus). Environmental Research, 100, 216–226.

    Google Scholar 

  • Mordechay, B., Mordehay, V., Tarchitzky, J. and Chefetz, B. (2021) Pharmaceuticals in edible crops irrigated with reclaimed wastewater: Evidence from a large survey in Israel. J. Hazard. Mater., 416, 126184.

  • Park, J., Kim, C., Hong, Y., Lee, W., Chung, H., Jeong, D.-H., & Kim, H. (2020). Distribution and removal of pharmaceuticals in iquid and solid phases in the unit processes of sewage treatment plants. International Journal of Environmental Research and Public Health, 17, 687.

    Article  CAS  Google Scholar 

  • Peng, J., Wang, X., Yin, F., & Xu, G. (2019). Characterizing the removal routes of seven pharmaceuticals in the activated sludge process. Science of the Total Environment, 650, 2437–2445.

    Article  CAS  Google Scholar 

  • Petrie, B., Barden, R., & Kasprzyk-Horden, B. (2015). A review on emerging contaminants in wastewater and environment: Current knowledge, understudies areas and recommendations for future monitoring. Water Research, 72, 3–27.

    Article  CAS  Google Scholar 

  • Petrović, M., Hernando, M. D., Díaz-Cruz, M. S., & Barceló, D. (2005). Liquid chromatography-tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: A review. Journal of Chromatography A, 1067, 1–14.

    Article  Google Scholar 

  • Phoon, B., Cheen, C., Shuaib, M., Saheed, M., Pau- Loke, S., Jo-Shu, C., Chuan, T., Shiung, S. and Ching, J. (2020) Convencional and emerging technologies for removal of antibiotics from wastewater. J. Hazard. Mater., 400, 122961.

  • Pomiès, M., Choubert, J.-M., Wisniewski, C., & Coquery, M. (2013). Modelling of micropollutant removal in biological wastewater treatments: A review. Science of the Total Environment, 443, 733–748.

    Article  Google Scholar 

  • Poseidon. 2005. Final Report, http://www.eu-poseidon.com (Accessed 01 May 2017).

  • Quinn, B., Schmidt, W., O’Rourke, K., & Hernan, R. (2011). Effects of the pharmaceuticals gemfibrozil and diclofenac on biomarker expression in the zebra mussel (Dreissena polymorpha) and their comparison with standardized toxicity tests. Chemosphere, 84, 657–663.

    Article  CAS  Google Scholar 

  • Radjenovic, J., Petrovic, M., & Barceló, D. (2009). Fate and distribution of pharmaceuticals in wastewater and sewage sludge of conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Research, 43, 831–841.

    Article  CAS  Google Scholar 

  • Rivera-Jaimes, J. A., Postigo, C., Melgoza-Alemán, R. M., Aceña, J., Barceló, D., & López de Alda, M. (2018). Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment. Science of the Total Environment, 613–614, 1263–1274.

    Article  Google Scholar 

  • Salgado, R., Marques, R., Noronha, J. P., Carvalho, G., Oehmen, A., & Reis, M. A. M. (2012). Assessing the removal of pharmaceuticals and personal care products in a full-scale activated sludge plant. Environmental Science and Pollution Research, 19, 1818–1827.

    Article  CAS  Google Scholar 

  • Santiago-Diaz, A. L., & Salazar-Peláez, M. L. (2017). Star-up phase of a UASB-septic tank used for high strength municipal wastewater treatment in Mexico. Water Practice Technology, 12(2), 287–294.

    Article  Google Scholar 

  • Sipma, J., Osuna, B., Collado, N., Monclús, H., Ferrero, G.,Comas, J. and Rodriguez-Roda, I. (2010) Comparison of removal of pharmaceuticals in MBR and activated sludge systems Desalination., 250, 653-659

  • Stevens-Garmon, J., Drewea, J. E., Khan, S. J., & McDonald, J. A. (2011). Sorption of emerging trace organic compounds onto wastewater sludge solids. Water Research, 45, 3417–3426.

    Article  CAS  Google Scholar 

  • Suarez, S., Lema, J. M., & Omil, F. (2010). Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions. Water Research, 44, 3214–3224.

    Article  CAS  Google Scholar 

  • Ternes, T. (2001). Analytical methods for the determination of pharmaceuticals in aqueous environmental samples. TrAC, Trends in Analytical Chemistry, 20(8), 419–434.

    Article  CAS  Google Scholar 

  • Ternes, T. A., Herrmann, N., Bonerz, M., Knacker, T., Siegrist, H., & Joss, A. (2004). A rapid method to measure the solid–water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water Research, 38(19), 4075–4084.

    Article  CAS  Google Scholar 

  • Thaheran, M., Brar, S., Verma, M., Surampalli, R., Zhang, T., & Valero, J. (2016). Membrane processes for removal of pharmaceutically active compounds (PhACs) form water and wastewater. Science of the Total Environment, 547, 60–77.

    Article  Google Scholar 

  • Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R., & Buelna, G. (2017). Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource Technology, 224, 1–12.

    Article  CAS  Google Scholar 

  • Verlicchi, P., & Zambello, E. (2015). Pharmaceutical and personal care products in untreated and treated sewage sludge: Occurrence and environmental risk in the case of application on soil- A critical review. Science of the Total Environment, 538, 750–767.

    Article  CAS  Google Scholar 

  • Zupanc, M., Kosjek, T., Petkovšek, M., Dular, M., Kompare, B., Širok, B., Blažeka, Ž, & Heath, E. (2012). Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment. Ultrasonics Sonochemistry, 20(4), 1104–1112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Baltazar Estrada-Arriaga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Macías, T., Mijaylova Nacheva, P., Esquivel-Sotelo, A. et al. Batch Kinetic Studies of Pharmaceutical Compounds Removal Using Activated Sludge Obtained from a Membrane Bioreactor. Water Air Soil Pollut 233, 36 (2022). https://doi.org/10.1007/s11270-022-05508-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05508-w

Keywords

Navigation