Skip to main content
Log in

Combined Effects of Fe/Al Oxyhydroxide Coating and pH on Polystyrene Nanoplastic Transport in Saturated Sand Media

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Nanoplastics (NPs) in the subsurface environment have received great attention recently. In this study, column experiments were conducted to investigate the individual effect of Fe and Al oxyhydroxide, and also the combined effects of the two oxyhydroxides and pH on the transport of polystyrene nanoplastics (PSNPs) in water-saturated Fe/Al oxyhydroxide-coating sand. The results showed that compared with Fe oxyhydroxide, Al oxyhydroxide exhibited a more profound impact to retain PSNPs because of its higher pHPZC (point of zero charge; Fe: 7.2, Al: 9.9). More interestingly, for pH values (Fe: 4.5–7.0, Al: 4.5–9.7) lower than Fe/Al oxyhydroxide pHPZC, Fe/Al oxyhydroxide coating dramatically enhanced the retention of negatively charged PSNPs, attributing to the less negatively charged surface and thus reduced electrostatic repulsion. In contrast, for pH values (Fe: 9.7, Al: 11.0) higher than Fe/Al oxyhydroxide pHPZC, Fe/Al oxyhydroxide coating had negligible influence on PSNP retention, because the electrostatic repulsion dominated the transport process. These results clearly demonstrate that pH strongly mediates the transport of PSNPs in Fe/Al oxyhydroxide-coated sand, and emphasize the dominant role of electrostatic interaction in PSNP transport. Findings of this study provide new insight into understanding and predicting the fate and transport of NPs in natural medias with complex physicochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alimi, O. S., Farner Budarz, J., Hernandez, L. M., & Tufenkji, N. (2018). Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environmental Science & Technology, 52, 1704–1724.

    Article  CAS  Google Scholar 

  • Dong, Z., Qiu, Y., Zhang, W., Yang, Z., & Wei, L. (2018). Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater. Water Research, 143, 518–526.

    Article  CAS  Google Scholar 

  • Fisher-Power, L. M., Cheng, T. (2018). Nanoscale titanium dioxide (nTiO2) transport in natural sediments: importance of soil organic matter and Fe/Al oxyhydroxides. Environmental Science & Technology, 52, 2668–2676.

  • Hurley, R. R., & Nizzetto, L. (2018). Fate and occurrence of micro(nano)plastics in soils: Knowledge gaps and possible risks. Current Opinion in Environmental Science & Health, 1, 6–11.

    Article  Google Scholar 

  • Jeong, C. B., Kang, H. M., Lee, Y. H., Kim, M. S., Lee, J. S., Seo, J. S., Wang, M., & Lee, J. S. (2018). Nanoplastic ingestion enhances toxicity of persistent organic pollutants (POPs) in the monogonont potifer brachionus koreanus via multixenobiotic resistance (MXR) disruption. Environmental Science & Technology, 52, 11411–11418.

    Article  CAS  Google Scholar 

  • Johnson, P. R., Sun, N., & Elimelech, M. (1996). Colloid transport in geochemically heterogeneous porous media: Modeling and measurements. Environmental Science & Technology, 30, 3284–3293.

    Article  CAS  Google Scholar 

  • Kang, J. K., Yi, I. G., Park, J. A., Kim, S. B., Kim, H., Han, Y., Kim, P. J., Eom, I. C., & Jo, E. (2015). Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses. Journal of Contaminant Hydrology, 177–178, 194–205.

    Article  Google Scholar 

  • Kuan, W. H., Lo, S. L., Wang, M. K., & Lin, C. F. (1998). Removal of Se(IV) and Se(VI) from water by aluminum-oxide-coated sand. Water Research, 32, 915–923.

    Article  CAS  Google Scholar 

  • Li, M., He, L., Zhang, M., Liu, X., Tong, M., & Kim, H. (2019). Cotransport and deposition of iron oxides with different-sized plastic particles in saturated quartz sand. Environmental Science & Technology, 53, 3547–3557.

    Article  CAS  Google Scholar 

  • Liu, J., Zhang, T., Tian, L., Liu, X., Qi, Z., Ma, Y., Ji, R., & Chen, W. (2019). Aging significantly affects mobility and contaminant-mobilizing ability of nanoplastics in saturated loamy sand. Environmental Science & Technology, 53, 5805–5815.

    Article  CAS  Google Scholar 

  • Liu, Y., Shao, H., Liu, J., Cao, R., Shang, E., Liu, S., Li, Y., 2021. Transport and transformation of microplastics and nanoplastics in the soil environment: A critical review. Soil Use and Management.

  • Lu, T., Gilfedder, B. S., Peng, H., Peiffer, S., Papastavrou, G., Ottermann, K., & Frei, S. (2021). Relevance of iron oxyhydroxide and pore water chemistry on the mobility of nanoplastic particles in water-saturated porous media environments. Water, Air, & Soil Pollution, 232, 168.

    Article  CAS  Google Scholar 

  • Luo, Y., Zhang, Y., Xu, Y., Guo, X., & Zhu, L. (2020). Distribution characteristics and mechanism of microplastics mediated by soil physicochemical properties. Science of The Total Environment, 726, 138389.

    Article  CAS  Google Scholar 

  • Lyu, X., Liu, X., Wu, X., Sun, Y., Gao, B., & Wu, J. (2020). Importance of Al/Fe oxyhydroxide coating and ionic strength in perfluorooctanoic acid (PFOA) transport in saturated porous media. Water Research, 175, 115685.

    Article  CAS  Google Scholar 

  • Mofijur, M., Ahmed, S. F., Rahman, S. M. A., Arafat Siddiki, S. K. Y., Islam, A. B. M. S., Shahabuddin, M., Ong, H. C., Mahlia, T. M. I., Djavanroodi, F., & Show, P. L. (2021). Source, distribution and emerging threat of micro- and nanoplastics to marine organism and human health: socio-economic impact and management strategies. Environmental Research, 195, 110857.

    Article  CAS  Google Scholar 

  • Qi, R., Jones, D. L., Li, Z., Liu, Q., & Yan, C. (2020). Behavior of microplastics and plastic film residues in the soil environment: A critical review. Science of The Total Environment, 703, 134722.

    Article  CAS  Google Scholar 

  • Qu, M., Kong, Y., Yuan, Y. J., & Wang, D. Y. (2019). Neuronal damage induced by nanopolystyrene particles in nematode Caenorhabditis elegans. Environmental Science: Nano, 6, 2591–2601.

    CAS  Google Scholar 

  • Rillig, M. C., Ingraffia, R., & Machado, A. A. (2017). Microplastic incorporation into soil in agroecosystems. Frontiers in Plant Science, 8, 1805.

    Article  Google Scholar 

  • Schwaferts, C., Niessner, R., Elsner, M., & Ivleva, N. P. (2019). Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends in Analytical Chemistry, 112, 52–65.

    Article  CAS  Google Scholar 

  • Song, Z., Yang, X., Chen, F., Zhao, F., Zhao, Y., Ruan, L., Wang, Y., & Yang, Y. (2019). Fate and transport of nanoplastics in complex natural aquifer media: Effect of particle size and surface functionalization. Science of the Total Environment, 669, 120–128.

    Article  CAS  Google Scholar 

  • Stahl, R. S., & James, B. R. (1991). Zinc sorption by iron-oxide-coated sand as a function of pH. Soil Science Society of America Journal, 55, 1287–1290.

    Article  CAS  Google Scholar 

  • Tian, Y., Gao, B., Silvera-Batista, C., & Ziegler, K. J. (2010). Transport of engineered nanoparticles in saturated porous media. Journal of Nanoparticle Research, 12, 2371–2380.

    Article  CAS  Google Scholar 

  • Torkzaban, S., & Bradford, S. A. (2016). Critical role of surface roughness on colloid retention and release in porous media. Water Research, 88, 274–284.

    Article  CAS  Google Scholar 

  • Wang, D., Bradford, S. A., Harvey, R. W., Gao, B., Cang, L., & Zhou, D. (2012). Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand. Environmental Science & Technology, 46, 2738–2745.

    Article  CAS  Google Scholar 

  • Wang, D., Zhang, W., & Zhou, D. (2013). Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand. Environmental Science & Technology, 47, 5154–5161.

    Article  CAS  Google Scholar 

  • Wang, F., Wong, C. S., Chen, D., Lu, X. W., Wang, F., & Zeng, E. Y. (2018). Interaction of toxic chemicals with microplastics: A critical review. Water Research, 139, 208–219.

    Article  CAS  Google Scholar 

  • Wu, X., Lyu, X., Li, Z., Gao, B., Zeng, X., Wu, J., & Sun, Y. (2020). Transport of polystyrene nanoplastics in natural soils: effect of soil properties, ionic strength and cation type. Science of The Total Environment, 707, 136065.

    Article  CAS  Google Scholar 

  • Xu, B., Liu, F., Cryder, Z., Huang, D., Lu, Z., He, Y., Wang, H., Lu, Z., Brookes, P. C., Tang, C., Gan, J., & Xu, J. (2020). Microplastics in the soil environment: Occurrence, risks, interactions and fate — a review. Critical Reviews in Environmental Science and Technology, 50, 2175–2222.

    Article  CAS  Google Scholar 

  • Yang, X., Flynn, R., von der Kammer, F., & Hofmann, T. (2011). Influence of ionic strength and pH on the limitation of latex microsphere deposition sites on iron-oxide coated sand by humic acid. Environmental Pollution, 159, 1896–1904.

    Article  CAS  Google Scholar 

  • Yuan, R., Zhang, W., Tao, X., Wang, S., & Zhang, L. (2020). Coupled effects of high pH and chemical heterogeneity on colloid retention and release in saturated porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124285.

    Article  CAS  Google Scholar 

  • Zhang, W., Isaacson, C. W., Rattanaudompol, U. S., Powell, T. B., & Bouchard, D. (2012). Fullerene nanoparticles exhibit greater retention in freshwater sediment than in model porous media. Water Research, 46, 2992–3004.

    Article  CAS  Google Scholar 

  • Zhang, Y., Luo, Y., Guo, X., Xia, T., Wang, T., Jia, H., & Zhu, L. (2020). Charge mediated interaction of polystyrene nanoplastic (PSNP) with minerals in aqueous phase. Water Research, 178, 115861.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2018 YFC1800604), the National Natural Science Foundation of China (42007114), and the Natural Science Foundation of Jiangsu Province (BK20200817).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueyan Lyu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 311 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zeng, X., Lyu, X. et al. Combined Effects of Fe/Al Oxyhydroxide Coating and pH on Polystyrene Nanoplastic Transport in Saturated Sand Media. Water Air Soil Pollut 233, 2 (2022). https://doi.org/10.1007/s11270-021-05469-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05469-6

Keywords

Navigation