Skip to main content

Advertisement

Log in

The Effects of Agronomic Herbaceous Plants on the Soil Structure of Gold Mine Tailings and the Establishment of Boreal Forest Tree Seedlings

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In Canada, low-grade ore mines generate large amounts of mineral waste, such as mine tailings. To control erosion of the fine-grained tailings particles as quickly as possible, it is common practice for the mining industry to revegetate the mine tailings with agronomic herbaceous plants. However, it is unclear whether this practice is consequential to the natural establishment of boreal species. The first objective of this study was to evaluate which families of agronomic herbaceous plants (legumes or grasses) result in the most favorable physical and chemical soil properties for the establishment of boreal species. The second objective was to determine the effect of the agronomic herbaceous plants on the growth and foliar nutrient concentration on three indigenous boreal forest seedlings; jack pine (Pinus banksiana Lambert), tamarack (Larix laricina Du Roi), paper birch (Betula papyrifera Marshall), and a willow cultivar (Salix miyabeana Seemen). In 2013, a 1-ha in situ experimental surface of mine tailings was set up on the gold mine site in Malartic, Abitibi-Témiscamingue, Quebec. The experimental site was subdivided into three blocks, each further divided in 5 plots. Each plot was randomly seeded as follows: 100% grass, 100% legumes, a mixture of both, topsoil, and a control (tailings only, no seeding). In the 2015 spring season, thirty seedlings of the three boreal tree species and cuttings of the willow cultivars were planted in each treatment plot. Seedling height and root biomass were measured at the end of the 2016 growing season. Soil sample analyses indicated significant differences for bulk density, wilting point, and organic matter content between the topsoil and the different agronomic herbaceous and control treatments; however, no significant differences were found between the different herbaceous treatments and the control for soil pH, bulk density, wilting point, macroporosity, and organic matter content. The mortality rate of jack pine, tamarack, and paper birch seedlings was higher in the control plots compared to all other treatments. Root biomass and height of the willow cultivar were significantly higher in the legumes compared with topsoil treatment. Among the four pioneer tree seedlings studied, this research indicates that the combination of the willow cultivar with the legumes treatment produces the best seedling growth and survival in the highly abiotic and stressful environments inherent to mine tailings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abdul-Kareem, A., & McRae, S. (1984). The effects on the topsoil of long-term storage in stockpiles. Plant and Soil, 76(1–3), 357–363.

    Article  CAS  Google Scholar 

  • Afzal, I., Shinwari, Z. K., Sikandar, S., & Shahzad, S. (2019). Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research, 221, 36–49.

    Article  CAS  Google Scholar 

  • Agron. Madison, Wisc. Pp. 1367–1378.

  • Allison, L.E. 1965. Organic carbon. In Methods of soil analysis. 2nd part. Am. Soc. Agron. Madison, Wisc. pp. 1367–1378.

  • Angers, D., & Caron, J. (1998). Plant-induced changes in soil structure: Processes and feedbacks. Biogeochemistry, 42(1), 55–72.

    Article  Google Scholar 

  • Aronsson, P., & Perttu, K. (2001). Willow vegetation filters for wastewater treatment and soil remediation combined with biomass production. The Forestry Chronicle, 77(2), 293–299.

    Article  Google Scholar 

  • Asensio, V., Vega, F., & Covelo, E. (2014). Changes in the Phytoavailability of Nutrients in Mine Soils after Planting Trees and Amending with Wastes. Water, Air, & Soil Pollution, 225(6), 1–13.

    Article  CAS  Google Scholar 

  • Asensio, V., Vega, F. A., Singh, B. R., & Covelo, E. F. (2013). Effects of tree vegetation and waste amendments on the fractionation of Cr, Cu, Ni, Pb and Zn in polluted mine soils. Science of the total environment, 443, 446–453.

    Article  CAS  Google Scholar 

  • Ball, D. F. (1964). Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. Journal of Soil Science, 15(1), 84–92.

    Article  CAS  Google Scholar 

  • Bardgett, R. D., Mommer, L., & De Vries, F. T. (2014). Going underground: Root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29(12), 692–699.

    Article  Google Scholar 

  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48.

    Article  Google Scholar 

  • Belimov, A. A., Puhalsky, I. V., Safronova, V. I., Shaposhnikov, A. I., Vishnyakova, M. A., Semenova, E. V., . . . Tikhonovich, I. A. (2015). Role of plant genotype and soil conditions in symbiotic plant-microbe interactions for adaptation of plants to cadmium-polluted soils. Water, Air, & Soil Pollution, 226(8), 1-15.Bendfeldt, E. S., Burger, J. A., & Daniels, W. L. (2001). Quality of amended mine soils after sixteen years. Soil Science Society of America Journal, 65(6), 1736-1744.

  • Bendfeldt, E. S., Burger, J. A., & Daniels, W. L. (2001). Quality of amended mine soils after sixteen years. Soil Science Society of America Journal, 65(6), 1736–1744.

    Article  CAS  Google Scholar 

  • Bennett, G. F. (1995). Mining and its environmental impact: By R.E. Hester and R.M. Harrison (Eds.), Royal Society of Chemistry, Letchworth, UK, 1994, 164 pp., Vol. 43, pp. 278–279.

  • Bot, A., & Benites, J. (2005). The importance of soil organic matter: Key to drought-resistant soil and sustained food production: Food & Agriculture

  • Boyter, M., Brummer, J., & Leininger, W. (2009). Growth and metal accumulation of Geyer and mountain willow grown in topsoil versus amended mine tailings. Water, Air, and Soil Pollution, 198(1–4), 17–29.

    Article  CAS  Google Scholar 

  • Bradshaw, A. (1997). Restoration of mined lands—Using natural processes. Ecological Engineering, 8(4), 255–269.

    Article  Google Scholar 

  • Bradshaw, A. D., & Chadwick, M. J. (1980). The restoration of land: The ecology and reclamation of derelict and degraded land: Univ of California Press.

  • Bradshaw, A., Humphreys, M., & Johnson, M. (1978). The value of heavy metal tolerance in the revegetation of metalliferous mine wastes. Environmental management of mineral wastes. Sijthoff & Noordhoff, The Netherlands, 311–314.

  • Brandt, J. P., Flannigan, M., Maynard, D., Thompson, I., & Volney, W. (2013). An introduction to Canada’s boreal zone: Ecosystem processes, health, sustainability, and environmental issues. Environmental Reviews, 21(4), 207–226.

    Article  Google Scholar 

  • Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124(1–2), 3–22.

    Article  CAS  Google Scholar 

  • Burger, J. A., Mitchem, D., & Daniels, W. L. (2007). Red oak seedling response to different topsoil substitutes after five years. Paper presented at the 24th Annual national conference of the American society of mining and reclamation, Lexington.

  • Bussière, B. (2007). Colloquium 2004: Hydrogeotechnical properties of hard rock tailings from metal mines and emerging geoenvironmental disposal approaches. Canadian Geotechnical Journal, 44(9), 1019–1052.

    Article  Google Scholar 

  • Natural Resource Canada (NRCan). (2016). Mining Activities, 2016. http://sead.nrcan.gc.ca/PDF/MIS2016TableG02a-en.pdf

  • Capra, G. F., Ganga, A., Grilli, E., Vacca, S., & Buondonno, A. (2015). A review on anthropogenic soils from a worldwide perspective. Journal of Soils and Sediments, 15(7), 1602–1618.

    Article  CAS  Google Scholar 

  • Carnevale, N. J., & Montagnini, F. (2002). Facilitating regeneration of secondary forests with the use of mixed and pure plantations of indigenous tree species. Forest Ecology and Management, 163(1–3), 217–227.

    Article  Google Scholar 

  • Cooke, J., & Johnson, M. (2002). Ecological restoration of land with particular reference to the mining of metals and industrial minerals: A review of theory and practice. Environmental Reviews, 10(1), 41–71.

    Article  CAS  Google Scholar 

  • Dazzi, C., & Lo Papa, G. (2015). Anthropogenic soils: General aspects and features. Ecocycles, 1(1), 3–8.

    Article  Google Scholar 

  • Domingo, J. P. T., & David, C. P. C. (2014). Geochemical characterization of copper tailings after legume revegetation. Science Diliman, 26(2).

  • Donato, D. B., Nichols, O., Possingham, H., Moore, M., Ricci, P. F., & Noller, B. N. (2007). A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife. Environment International, 33(7), 974–984.

    Article  CAS  Google Scholar 

  • Dormaar, J., & Foster, R. (1991). Nascent aggregates in the rhizosphere of perennial ryegrass (Lolium perenne L.). Canadian Journal of Soil Science, 71(4), 465–474.

    Article  Google Scholar 

  • Doty, S. L., Oakley, B., Xin, G., Kang, J. W., Singleton, G., Khan, Z., … Staley, J. T. (2009). Diazotrophic endophytes of native black cottonwood and willow. Symbiosis, 47(1), 23-33.

  • Dudka, S., & Adriano, D. (1997). Environmental impacts of metal ore mining and processing: A review. Journal of Environmental Quality, 26(3), 590.

    Article  CAS  Google Scholar 

  • Edraki, M., Baumgartl, T., Manlapig, E., Bradshaw, D., Franks, D. M., & Moran, C. J. (2014). Designing mine tailings for better environmental, social, and economic outcomes: A review of alternative approaches. Journal of Cleaner Production, 84, 411–420.

    Article  Google Scholar 

  • Espeland, E. K., & Perkins, L. B. (2013). Annual cover crops do not inhibit early growth of perennial grasses on a disturbed restoration soil in the northern great plains, USA. Ecological Restoration, 31(1), 69–78.

    Article  Google Scholar 

  • Fields-Johnson, C. W., Zipper, C. E., Burger, J. A., & Evans, D. M. (2012). Forest restoration on steep slopes after coal surface mining in Appalachian USA: Soil grading and seeding effects. Forest Ecology and Management, 270, 126–134.

    Article  Google Scholar 

  • Filcheva, E., Noustorova, M., Gentcheva-Kostadinova, S., & Haigh, M. (2000). Organic accumulation and microbial action in surface coal-mine spoils, Pernik. Bulgaria. Ecological Engineering, 15(1–2), 1–15.

    Google Scholar 

  • Fream W. (1905). Elements of Agriculture. The Royal Agricultural Society of England. Seventh Edition. John Murray, London 486 p.

  • Gagnon, V., Rodrigue-Morin, M., Tardif, A., Beaudin, J., Greer, C. W., Shipley, B., & Roy, S. (2020). Differences in elemental composition of tailings, soils, and plant tissues following five decades of native plant colonization on a gold mine site in Northwestern Québec. Chemosphere, 250, 126243.

    Article  CAS  Google Scholar 

  • Garbarino, M., Lingua, E., Nagel, T. A., Godone, D., & Motta, R. (2010). Patterns of larch establishment following deglaciation of Ventina glacier, central Italian Alps. Forest Ecology and Management, 259(3), 583–590.

    Article  Google Scholar 

  • Government of Canada (2016). Exploration and mining in Canada: An investor’s brief. Natural Resources Canada. Retrieved from https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/mineralsmetals/pdf/mms-smm/poli-poli/pdf/Investment_Brief_e.pdf. Accessed 25 Jan 2021.

  • Government of Canada. Agriculture and Agri-Food Canada. (2015). The Canadian System of Soil Classification.3rd edition. https://sis.agr.gc.ca/cansis/taxa/cssc3/index.html. Accessed 5 Mar 2020.

  • Government of Canada. (2021). Canadian Climate Normals 1981-2010 Station Data. https://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?searchType=stnProv&lstProvince=QC&txtCentralLatMin=0&txtCentralLatSec=0&txtCentralLongMin=0&txtCentralLongSec=0&stnID=5988&dispBack=0. Accessed 2 Feb 2020.

  • Government of Quebec (2017). MINING ACT, chapter M-13.1. PDF. Updated to 11 November 30, 2017

  • Government of Saskatchewan. (2021). Soil improvements with legumes. Government of Saskatchewan Agricultural Knowledge Centre. Retrieved from https://www.saskatchewan.ca/business/agriculture-natural-resources-and-industry/agribusiness-farmers-and-ranchers/crops-and-irrigation/soils-fertility-and-nutrients/soil-improvements-with-legumes. Accessed 7 May 2021.

  • Grevers, M., Jong, E., & d. (1990). The characterization of soil macroporosity of a clay soil under ten grasses using image analysis. Canadian Journal of Soil Science, 70(1), 93–103.

    Article  Google Scholar 

  • Guide d’intervention– Protection des sols et réhabilitation des terrains contaminés. Retrieved from https://www.environnement.gouv.qc.ca/sol/terrains/guide-intervention/annexe2.pdf

  • Guittonny-Larchevêque, M., & Pednault, C. (2016). Substrate comparison for short-term success of a multispecies tree plantation in thickened tailings of a boreal gold mine. New Forests, 47(5), 763–781.

    Article  Google Scholar 

  • Guittonny-Larchevêque, M., Bussière, B., & Pednault, C. (2016a). Tree–substrate water relations and root development in tree plantations used for mine tailings reclamation. Journal of Environmental Quality, 45(3), 1036–1045.

    Article  Google Scholar 

  • Guittonny-Larchevêque, M., Meddeb, Y., & Barrette, D. (2016b). Can graminoids used for mine tailings revegetation improve substrate structure? Botany, 94(11), 1053–1061.

    Article  Google Scholar 

  • Hodson, M. J. (2012). Metal toxicity and tolerance in plants. The Biochemist, 34(5), 28–32.

    Article  CAS  Google Scholar 

  • Huang, L., Baumgartl, T., & Mulligan, D. (2012). Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings? Annals of Botany, 110(2), 223–238.

    Article  Google Scholar 

  • Ibrahim, S., & Goh, T. B. (2005). Changes in macro aggregation and associated characteristics in mine tailings amended with humic substances. Communications in Soil Science and Plant Analysis, 35(13–14), 1905–1922.

    Article  Google Scholar 

  • Indiana Geological & Water Survey. (n.d.). Mine Reclamation. Retrieved July 7, 2021, from https://igws.indiana.edu/Reclamation

  • Jefferies, R., Willson, K., & Bradshaw, A. (1981). The potential of legumes as a nitrogen source for the reclamation of derelict land. Plant and Soil, 59(1), 173–177.

    Article  CAS  Google Scholar 

  • Khasa, P., Hambling, B., Kernaghan, G., Fung, M., & Ngimbi, E. (2002). Genetic variability in salt tolerance of selected boreal woody seedlings. Forest Ecology and Management, 165(1–3), 257–269.

    Article  Google Scholar 

  • Khasa, D. P., Fung, M., & Logan, B. (2005). Early growth response of container-grown selected woody boreal seedlings in amended composite tailings and tailings sand. Bioresource Technology, 96(7), 857–864.

    Article  CAS  Google Scholar 

  • Kirkey, F. M., Matthews, J., & Ryser, P. (2012). Metal resistance in populations of red maple (Acer rubrum L.) and white birch (Betula papyrifera Marsh.) from a metal-contaminated region and neighboring non-contaminated regions. Environmental Pollution, 164, 53–58.

    Article  CAS  Google Scholar 

  • Kuzovkina, Y. A., & Quigley, M. F. (2005). Willows beyond wetlands uses of Salix L. species for environmental projects. Water, Air, and Soil Pollution, 162(1–4), 183–204.

    Article  CAS  Google Scholar 

  • Kuzovkina, Y., Knee, M., & Quigley, M. (2004a). Soil compaction and flooding effects on the growth of twelve Salix L. species. J. Environ. Hort, 22, 155–160.

    Google Scholar 

  • Kuzovkina, Y. A., Knee, M., & Quigley, M. F. (2004). Cadmium and copper uptake and translocation in five willows (Salix L.) species. International Journal of Phytoremediation, 6(3), 269–287.

    Article  CAS  Google Scholar 

  • Lafleur, B., Paré, D., Claveau, Y., Thiffault, É., & Bélanger, N. (2013). Influence of afforestation on soil: The case of mineral weathering. Geoderma, 202, 18–29.

    Article  Google Scholar 

  • Larchevêque, M., Desrochers, A., Bussière, B., Cartier, H., & David, J. S. (2013). Revegetation of non-acid-generating, thickened tailings with boreal trees: A greenhouse study. Journal of Environmental Quality, 42(2), 351–360.

    Article  Google Scholar 

  • Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18.

    Article  Google Scholar 

  • Ledgard, S., & Steele, K. (1992). Biological nitrogen fixation in mixed legume/grass pastures. Plant and Soil, 141(1–2), 137–153.

    Article  CAS  Google Scholar 

  • Lenth, R. (2020) emmeans: Estimated marginal means, aka least-squares means. R package version 1.4.6. https://CRAN.R-project.org/package=emmeans

  • Li, X., & Fung, M. (1998). Creating soil-like materials for plant growth using tailings sand and fine tails. Journal of Canadian Petroleum Technology, 37(11).

  • Liu, X., Bai, Z., Zhou, W., Cao, Y., & Zhang, G. (2017). Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau, China. Ecological Engineering, 98, 228–239.

    Article  Google Scholar 

  • Lottermoser, B. G. (2007). Mine wastes : characterization, treatment, and environmental impacts (2nd ed.). Berlin New York: Springer.

    Google Scholar 

  • Macdonald, S., Quideau, S., & Landhäusser, S. (2012). Rebuilding boreal forest ecosystems after industrial disturbance. Restoration and reclamation of boreal ecosystems. Cambridge Univ. Press, Cambridge, UK, 123-160.

  • Maiti, D., & Maiti, S. (2014). Ecorestoration of waste dump by the establishment of grass-legume cover. International Journal of Scientific & Technology Research, 3(3), 37–41.

    Google Scholar 

  • ManagementNatural Resource Canada (NRCan). (2017, July 19) Tailings Management at NRCan. https://www.nrcan.gc.ca/maps-tools-and-publications/publications/minerals-mining-publications/tailings-management-nrcan/13924

  • Masindi, V., & Muedi, K. L. (2018). Environmental contamination by heavy metals. Heavy Metals, 19, 2019.

    Google Scholar 

  • Mastretta, C., Barac, T., Vangronsveld, J., Newman, L., Taghavi, S., Lelie, D., & v. d. (2006). Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnology and Genetic Engineering Reviews, 23(1), 175–188.

    Article  CAS  Google Scholar 

  • Mining Association of Canada (MAC) (2017). http://mining.ca/sites/default/files/documents/Facts-and-Figures-2017.pdf

  • Ministère de l’Énergie et des Ressources naturelles du Québec (MERN). (2017). Guide de préparation du plan de réaménagement et de restauration des sites miniers au Québec. Ministère de l’Énergie et des Ressources naturelles, Direction de la restauration des sites miniers.

  • Ministère de l’Énergie et des Ressources naturelles (MERN) (2021). https://mern.gouv.qc.ca/wp-content/uploads/choisir-secteur-minier-du-quebec.pdf. Accessed 12 Jan 2020.

  • Ministère de l’Environnement et de la Lute contre les changements climatiques (MELCC) (2021).

  • Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP). (2003). Zones de végétation et domaines bioclimatiques du Québec. https://mffp.gouv.qc.ca/. Accessed 28 June 2020.

  • Ministère des forêts, de la faune et des parcs (MFFP) (2021). https://mffp.gouv.qc.ca/documents/forets/inventaire/CA_zones_domaines_regions_ecologiques.pdf

  • Natural Resource Canada (NRCan), (2013). Tailings Management at NRCan. NRCan-TailingsMgmt_FS-eng.pdf (3 pages). http://sead.nrcan.gc.ca/PDF/MIS2016TableG02a-en.pdf

  • NRCan, (2013). Natural Resources Canada, PDF. Cat. No. M34-12/2013E-PDF1 (Online). ISBN 978-1-100-22540-1

  • Mosseler, A., & Major, J. (2017). Phytoremediation efficacy of Salix discolor and S. eriocesphela on adjacent acidic clay and shale overburden on a former mine site: growth, soil, and foliage traits. Forests, 8(12), 475.

    Article  Google Scholar 

  • Olsen, S., Cole, C., Watanabe, F., & Dean, L. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. 939. US Gov. Print. Office, Washington, DC. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. 939. US Gov. Print. Office, Washington, DC., Pp1–19.

  • Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA), Jack Kyle - Grazier Specialist/OMAFRA (Last Reviewed: 01 November 2011) .www.omafra.gov.on.ca/english/livestock/beef/news/vbn0209a4.htm

  • Ontario Ministry of Agriculture Food and Rural Affairs (OMAFRA) (2017). Agronomy Guide for Field Crops. Publication 811. http://www.omafra.gov.on.ca/english/crops/pub811/pub811.pdf

  • Ouni, Y., Ghnaya, T., Montemurro, F., Abdelly, C., & Lakhdar, A. (2014). The role of humic substances in mitigating the harmful effects of soil salinity and improve plant productivity. International Journal of Plant Production, 8(3), 353–374.

    Google Scholar 

  • Plaxton, W. C., & Carswell, M. C. (2018). Metabolic aspects of the phosphate starvation response in plants. In Plant Responses to Environmental Stresses (pp. 349–372): Routledge.

  • R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Renault, S., Markham, J., Davis, L., Sabra, A., & Szczerski, C. (2007). Revegetation of tailings at the Gunnar minesite, Manitoba (NTS 52L14): Plant growth in tailings amended with paper-mill sludge. Report of Activities 2007, Manitoba Science, Technology, Energy and Mines, Manitoba Geological Survey, 161–165.

  • Ripley, E. A., Crowder, A. A., & Redmann, R. E. (1996). Environmental effects of mining. St. Lucie Press.

    Google Scholar 

  • Robinsky, E., Barbour, S., Wilson, G., Bordin, D, Fredlund, D. (1991). Thickened sloped tailings disposal: An evaluation of seepage and abatement of acid drainage. Paper presented at the Proceedings of the 2nd International Conference on the Abatement of Acidic drainage.

  • Robinson, D. H. (1972). Fream's elements of agriculture. Fream's elements of agriculture. (15th ed).

  • Sanchez-López, A. S., Carrillo-Gonzalez, R., González-Chávez, M., & d. C. A., Rosas-Saito, G. H., & Vangronsveld, J. (2015). Phytobarriers: Plants capture particles containing potentially toxic elements originating from mine tailings in semiarid regions. Environmental Pollution, 205, 33–42.

    Article  Google Scholar 

  • Sheoran, V., Sheoran, A., & Poonia, P. (2010). Soil reclamation of abandoned mine land by revegetation: A review. International Journal of Soil, Sediment, and Water, 3(2), 13.

    Google Scholar 

  • Shrestha, R. K., & Lal, R. (2007). Soil carbon and nitrogen in 28-year-old land uses in reclaimed coal mine soils of Ohio. Journal of Environmental Quality, 36(6), 1775–1783.

    Article  CAS  Google Scholar 

  • Shrestha, R. K., & Lal, R. (2011). Changes in physical and chemical properties of soil after surface mining and reclamation. Geoderma, 161(3), 168–176.

    Article  CAS  Google Scholar 

  • Shrestha, R. K., Lal, R., & Jacinthe, P.-A. (2009). Enhancing carbon and nitrogen sequestration in reclaimed soils through organic amendments and chiseling. Soil Science Society of America Journal, 73(3), 1004–1011.

    Article  CAS  Google Scholar 

  • Skousen, J., Zipper, C., Burger, J., Barton, C., & Angel, P. (2011). Selecting materials for mine soil construction when establishing forests on Appalachian mine sites. Forest Reclamation Advisory, 8(6).

  • Sobek, A., Schuller, W., Freeman, J., & Smith, R. (1978). Field and laboratory methods applicable to overburden and minesoils: EPA 600.

  • South, D. B. (2016). Optimum pH for Growing Pine Seedlings. School of Forestry and Wildlife Sciences, Auburn University, AL. Paper presented at the Joint Meeting of the Northeast Forest and Conservation Nursery Association and Southern Forest Nursery Association (Lake Charles, LA, July 18–21, 2016).PDF. 14 pages

  • Statistics Canada (2017). Table 38–10–0077–01 Water discharge in mineral extraction industries, by point of discharge and industry (x 1,000,000). DOI: s10.25318/3810007701-eng

  • Szczerski, C., Naguit, C., Markham, J., Goh, T., & Renault, S. (2013). Short- and long-term effects of modified humic substances on soil evolution and plant growth in gold mine tailings. Water, Air, & Soil Pollution, 224(3), 1–1.

    Article  CAS  Google Scholar 

  • Tisdall, J. M., & OADES, J. M. (1982). Organic matter and water-stable aggregates in soils. Journal of soil science, 33(2), 141–163.

    Article  CAS  Google Scholar 

  • Toju, H., & Sato, H. (2018). Root-associated fungi shared between arbuscular mycorrhizal and ectomycorrhizal conifers in a temperate forest. Frontiers in Microbiology, 9, 433.

    Article  Google Scholar 

  • United States Department of Agriculture (USDA). (n.d.). PLANTS Database. Retrieved June 9, 2021 from https://plants.sc.egov.usda.gov/

  • Vincent, J.-S., & Hardy, L. (1977). L’évolution et l’extension des lacs glaciaires Barlow et Ojibway en territoire québécois. Géographie Physique Et Quaternaire, 31(3–4), 357–372.

    Google Scholar 

  • von Wuehlisch, G. (2011). Evidence for nitrogen fixation in the Salicaceae family. Indian ecological ecological society, 80.

  • Wang, L., Ji, B., Hu, Y., Liu, R., & Sun, W. (2017). A review on in situ phytoremediation of mine tailings. Chemosphere, 184, 594–600.

    Article  CAS  Google Scholar 

  • Yergeau, E., Sanschagrin, S., Maynard, C., St-Arnaud, M., & Greer, C. W. (2014). Microbial expression profiles in the rhizosphere of willows depend on soil contamination. The ISME Journal, 8(2), 344–358.

    Article  CAS  Google Scholar 

  • Young, I., Renault, S., & Markham, J. (2015). Low levels organic amendments improve fertility and plant cover on non-acid generating gold mine tailings. Ecological Engineering, 74, 250–257.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Professors Suzanne Brais and Brain Harvey of UQAT for their valuable insights and helpful comments. We are indebted to all student interns from the Université de Sherbrooke Environmental Studies program who participated in the long hours of data gathering. We are also grateful to Ms. Anne Savary, ing.f. from the Ministère des Forêts, de la Faune et des Parcs du Québec for providing the tree seedlings and seed supplies for this research.

Funding

The authors are grateful for the financial support of the BMP Grant (mining company, FRQNT, and NSERC).

canadian network for research and innovation in machining technology,natural sciences and engineering research council of canada,frqnt

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Barrette.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 540 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrette, D., Marchand, P., Nguena Nguefack, H.L. et al. The Effects of Agronomic Herbaceous Plants on the Soil Structure of Gold Mine Tailings and the Establishment of Boreal Forest Tree Seedlings. Water Air Soil Pollut 233, 16 (2022). https://doi.org/10.1007/s11270-021-05466-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05466-9

Keywords

Navigation