Skip to main content

Application of Thermally Treated Water Treatment Sludge as a Remarkable Adsorbent Towards Emerging Pollutant Removal from Aqueous Solution

Abstract

In this work, the application of thermally treated water treatment sludge on the adsorptive removal of acid red 97 dye, as well as on the treatment of a synthetic textile mixture, was evaluated. The material properties were obtained by different instrumental techniques. The calcined sludge presented mesoporous texture, and specific surface area of 60.2 m2 g−1. The pseudo-second-order model satisfactorily described the adsorption kinetics, while the Langmuir model was appropriate to describe the equilibrium data. A high adsorptive capacity of 4957 mg g−1 was found at 328 K. The thermodynamic investigation showed that the adsorption process is endothermic and spontaneous. There was a remarkable removal of several dyes contained in the synthetic mixture, corresponding to 74.4%. Therefore, the calcined sludge sample could be applied as a potential adsorbent in the treatment of colored wastewaters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data Availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files.

References

  1. Abo-El-Enein, S. A., Shebl, A., & El-Dahab, S. A. (2017). Drinking water treatment sludge as an efficient adsorbent for heavy metals removal. Applied Clay Science, 146, 343–349.

    CAS  Article  Google Scholar 

  2. Ahmad, T., Ahmad, K., & Alam, M. (2016). Characterization of water treatment plant’s sludge and its safe disposal options. Procedia Environmental Sciences, 35, 950–955.

    CAS  Article  Google Scholar 

  3. Alkahtani, S. A., Abu-Alrub, S. S., & Mahmoud, A. M. (2017). Adsorption of food coloring allura red dye (E129) from aqueous solutions using activated carbon. International Journal of Food and Allied Sciences, 3(1), 10–19.

    Article  Google Scholar 

  4. Aly-Eldeen, M. A., El-Sayed, A. A., Salem, D. M., & El Zokm, G. M. (2018). The uptake of Eriochrome Black T dye from aqueous solutions utilizing waste activated sludge: Adsorption process optimization using factorial design. The Egyptian Journal of Aquatic Research, 44(3), 179–186.

    Article  Google Scholar 

  5. Balarak, D., & Mostafapour, F. K. (2016). Adsorption behavior of acid red 97 dye on canola stalks. Journal of Scientific and Engineering Research, 3(3), 148–154.

    CAS  Google Scholar 

  6. Brião, G. V., Jahn, S. L., Foletto, E. L., & Dotto, G. L. (2018). Highly efficient and reusable mesoporous zeolite synthetized from a biopolymer for cationic dyes adsorption. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 556, 43–50.

    Article  CAS  Google Scholar 

  7. Cestari, A. R., Vieira, E. F., Dos Santos, A. G., Mota, J. A., & De Almeida, V. P. (2004). Adsorption of anionic dyes on chitosan beads. 1. The influence of the chemical structures of dyes and temperature on the adsorption kinetics. Journal of Colloid and Interface Science, 280(2), 380–386.

    CAS  Article  Google Scholar 

  8. Chittoo, B. S., & Sutherland, C. (2014). Adsorption of phosphorus using water treatment sludge. Journal of Applied Sciences, 14(24), 3455–3463.

    CAS  Article  Google Scholar 

  9. Cremades, L. V., Cusidó, J. A., & Arteaga, F. (2018). Recycling of sludge from drinking water treatment as ceramic material for the manufacture of tiles. Journal of Cleaner Production, 201, 1071–1080.

    CAS  Article  Google Scholar 

  10. Dil, E. A., Ghaedi, M., Asfaram, A., Mehrabi, F., & Bazrafshan, A. A. (2018). Optimization of process parameters for determination of trace hazardous dyes from industrial wastewaters based on nanostructures materials under ultrasound energy. Ultrasonics Sonochemistry, 40, 238–248.

    Article  CAS  Google Scholar 

  11. Dokmaj, T., Ibrahim, T., Khamis, M., Abouleish, M., & Alam, I. (2020). Chemically modified nanoparticles usage for removal of chromium from sewer water. Environmental Nanotechnology, Monitoring & Management, 100319.

  12. Fan, S., Wang, Y., Wang, Z., Tang, J., Tang, J., & Li, X. (2017). Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. Journal of Environmental Chemical Engineering, 5(1), 601–611.

    CAS  Article  Google Scholar 

  13. Fragoso, R. A., & Duarte, E. A. (2012). Reuse of drinking water treatment sludge for olive oil mill wastewater treatment. Water Science and Technology, 66(4), 887–894.

    CAS  Article  Google Scholar 

  14. Franco, D. S. P., Tanabe, E. H., & Dotto, G. L. (2017). Continuous adsorption of a cationic dye on surface modified rice husk: Statistical optimization and dynamic models. Chemical Engineering Communications, 204, 625–634.

    CAS  Article  Google Scholar 

  15. Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57(385471), 1100–1107.

    Google Scholar 

  16. Georgin, J., Alves, E., Drumm, F., Tonato, D., Grassi, P., Piccin, J. S., Oliveira, M. L. S., & Mazutti, M. A. (2019). Application of Beauveria bassiana spore waste as adsorbent to uptake acid red 97 dye from aqueous medium. Environmental Science and Pollution Research, 26(36), 36967–36977.

    CAS  Article  Google Scholar 

  17. Georgin, J., Franco, D. S., Netto, M. S., Allasia, D., Foletto, E. L., Oliveira, L. F., & Dotto, G. L. (2021). Transforming shrub waste into a high-efficiency adsorbent: Application of Physalis peruvian chalice treated with strong acid to remove the 2, 4-dichlorophenoxyacetic acid herbicide. Journal of Environmental Chemical Engineering, 9(1), 104574.

    CAS  Article  Google Scholar 

  18. Ghorpade, A., Ahammed, M. M., Ghorpade, A., & Ahammed, M. M. (2017). Water treatment sludge for removal of heavy metals from electroplating wastewater. Environmental Engineering Research, 23(1), 92–98.

    Article  Google Scholar 

  19. Giles, C. H., Smith, D., & Huitson, A. (1974). A general treatment and classification of the solute adsorption isotherm. I. Theoretical. Journal of colloid and interface science, 47(3), 755–765.

    CAS  Article  Google Scholar 

  20. Grassi, P., Drumm, F. C., Georgin, J., Franco, D. S. P., Foletto, E. L., Dotto, G. L., & Jahn, S. L. (2020). Water treatment plant sludge as iron source to catalyze a heterogeneous photo-Fenton reaction. Environmental Technology Innovation, 17, 100544.

    Article  Google Scholar 

  21. Hagemann, S. E., Gastaldini, A. L. G., Cocco, M., Jahn, S. L., & Terra, L. M. (2019). Synergic effects of the substitution of Portland cement for water treatment plant sludge ash and ground limestone: Technical and economic evaluation. Journal of Cleaner Production, 214, 916–926.

    CAS  Article  Google Scholar 

  22. Ho, Y. S., & McKay, G. (1998). Kinetic models for the sorption of dye from aqueous solution by wood. Trans IChemE76(B), 183–191.

  23. Hubbe, M. A., Azizian, S., & Douven, S. (2019). Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review. BioResources, 14(3), 7582–7626.

    Article  Google Scholar 

  24. Jiang, G., Rong, Z., & Sun, W. (2015). Effects of metakaolin on mechanical properties, pore structure and hydration heat of mortars at 0.17 w/b ratio. Construction and Building Materials, 93, 564–572.

    Article  Google Scholar 

  25. Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24, 1–39.

    Google Scholar 

  26. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361–1403.

    CAS  Article  Google Scholar 

  27. Lemma, R., Irassar, E. F., & Rahhal, V. (2015). Calcined illitic clays as Portland cement replacements. In Calcined Clays for Sustainable Concrete. Springer, 269–276.

  28. Lima, E. C., Hosseini-Bandegharaei, A., Moreno-Piraján, J. C., & Anastopoulos, I. (2019). A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. Journal of Molecular Liquids, 273, 425–434.

    CAS  Article  Google Scholar 

  29. Lima, P. E. A., Angélica, R. S., & Neves, R. F. (2018). Dissolution kinetics of Amazonian mWTPkaolin in nitric acid. Cerâmica, 64(369), 86–90.

    CAS  Article  Google Scholar 

  30. Liu, Y., Zhuge, Y., Chow, C. W.K., Keegan, A., Li, D., Pham, P. N., Huang, J., & Siddique, R. (2020a). Properties and microstructure of concrete blocks incorporating drinking water treatment sludge exposed to early-age carbonation curing. Journal of Cleaner Production, 121257.

  31. Liu, Y., Zhuge, Y., Chow, C. W., Keegan, A., Li, D., Pham, P. N., Huang, J., & Siddique, R. (2020). Utilization of drinking water treatment sludge in concrete paving blocks: Microstructural analysis, durability and leaching properties. Journal of Environmental Management, 262, 110352.

    CAS  Article  Google Scholar 

  32. Lu, F., Dong, A., Ding, G., Xu, K., Li, J., & You, L. (2019). Magnetic porous polymer composite for high performance adsorption of acid red 18 based on melamine resin and chitosan. Journal of Molecular Liquids, 294, 111515.

    CAS  Article  Google Scholar 

  33. Magdy, Y. H., & Altaher, H. (2018). Kinetic analysis of the adsorption of dyes from high strength wastewater on cement kiln dust. Journal of Environmental Chemical Engineering, 6(1), 834–841.

    CAS  Article  Google Scholar 

  34. Mirzaie, M., Rashidi, A., Tayebi, H. A., & Yazdanshenas, M. E. (2018). Adsorption of acid dyes on modified mesoporous SBA-15: Comparison of two dyes. Physical Chemistry Research, 6(3), 565–581.

    CAS  Google Scholar 

  35. Mo, J., Yang, Q., Zhang, N., Zhang, W., Zheng, Y., & Zhang, Z. (2018). A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. Journal of Environmental Management, 227, 395–405.

    CAS  Article  Google Scholar 

  36. Monteiro, S. N., Alexandre, J., Margem, J. I., Sánchez, R., & Vieira, C. M. F. (2008). Incorporation of sludge waste from water treatment plant into red ceramic. Construction and Building Materials, 22(6), 1281–1287.

    Article  Google Scholar 

  37. Mokri, H. G., Modirshahla, N., Behnajady, M. A., & Vahid, B. (2015). Adsorption of CI Acid Red 97 dye from aqueous solution onto walnut shell: Kinetics, thermodynamics parameters, isotherms. International Journal of Environmental Science and Technology, 12(4), 1401–1408.

    Article  CAS  Google Scholar 

  38. Mymrin, V., Alekseev, K., Fortini, O. M., Catai, R. E., Nagalli, A., Rissardi, J. L., Molinetti, A., Pedroso, D. E., & Izzo, R. L. (2017). Water cleaning sludge as principal component of composites to enhance mechanical properties of ecologically clean red ceramics. Journal of Cleaner Production, 145, 367–373.

    CAS  Article  Google Scholar 

  39. Pigatto, R. S., Franco, D. S. P., Netto, M. S., Jahn, S. L., & Dotto, G. L. (2020). An eco-friendly and low-cost strategy for groundwater defluorination: Adsorption of fluoride onto calcinated sludge. Journal of Environmental Chemical Engineering, 8(6), 104546.

    CAS  Article  Google Scholar 

  40. Redlich, O., & Peterson, D. L. (1959). A useful adsorption isotherm. J Ournal of Physical Chemistry, 63, 1024–1026.

    CAS  Article  Google Scholar 

  41. Rodrigues, L. P., & Holanda, J. N. F. (2015). Recycling of water treatment plant waste for production of soil-cement bricks. Procedia Materials Science, 8, 197–202.

    CAS  Article  Google Scholar 

  42. Salomón, Y. L. D. O., Georgin, J., Franco, D. S., Netto, M. S., Piccilli, D. G., Foletto, E. L., Oliveira, L. F. S., & Dotto, G. L. (2021). High-performance removal of 2, 4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana). Journal of Environmental Chemical Engineering, 9(1), 104911.

    Article  CAS  Google Scholar 

  43. Schadeck, M. N., Rossatto, D. L., Jahn, S. L., Mallmann, E. S., Dotto, G. L., & Foletto, E. L. (2019). Preparation of a novel magnetic geopolymer/zero–valent iron composite with remarkable adsorption performance towards aqueous Acid Red 97. Chemical Engineering Communications, 207, 1–14.

    Google Scholar 

  44. Shalaby, N. H., Ewais, E. M., Elsaadany, R. M., & Ahmed, A. (2017). Rice husk templated water treatment sludge as low cost dye and metal adsorbent. Egyptian Journal of Petroleum, 26(3), 661–668.

    Article  Google Scholar 

  45. Silva, T. L., Ronix, A., Pezoti, O., Souza, L. S., Leandro, P. K., Bedin, K. C., Beltrame, K. K., Cazetta, A. L., & Almeida, V. C. (2016). Mesoporous activated carbon from industrial laundry sewage sludge: Adsorption studies of reactive dye Remazol Brilliant Blue R. Chemical Engineering Journal, 303, 467–476.

    CAS  Article  Google Scholar 

  46. Siswoyo, E., Mihara, Y., & Tanaka, S. (2014). Determination of key components and adsorption capacity of a low cost adsorbent based on sludge of drinking water treatment plant to adsorb cadmium ion in water. Applied Clay Science, 97, 146–152.

    Article  CAS  Google Scholar 

  47. Sonai, G. G., de Souza, S. M. G. U., de Oliveira, D., & de Souza, A. A. U. (2016). The application of textile sludge adsorbents for the removal of Reactive Red 2 dye. Journal of Environmental Management, 168, 149–156.

    CAS  Article  Google Scholar 

  48. Streit, A. F., Côrtes, L. N., Druzian, S. P., Godinho, M., Collazzo, G. C., Perondi, D., & Dotto, G. L. (2019). Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions. Science of the Total Environment, 660, 277–287.

    CAS  Article  Google Scholar 

  49. Streit, A. F. M., Collazzo, G. C., Druzian, S. P., Oliveira, L. F. S., & Dotto, G. L. (2021). Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry. Chemosphere, 262, 128322.

    CAS  Article  Google Scholar 

  50. Suresh, S. (2016). Biosorption of acid dyes from aqueous solution using Curcuma angustifolia scales. Environmental Health Engineering and Management Journal, 3(3), 123–129.

    CAS  Article  Google Scholar 

  51. Tantawy, M. A. (2015). Characterization and pozzolanic properties of calcined alum sludge. Materials Research Bulletin, 61, 415–421.

    CAS  Article  Google Scholar 

  52. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069.

    CAS  Article  Google Scholar 

  53. Thue, P. S., Sophia, A. C., Lima, E. C., Wamba, A. G., de Alencar, W. S., dos Reis, G. S., Rodembusch, F. S., & Dias, S. L. (2018). Synthesis and characterization of a novel organic-inorganic hybrid clay adsorbent for the removal of acid red 1 and acid green 25 from aqueous solutions. Journal of Cleaner Production, 171, 30–44.

    CAS  Article  Google Scholar 

  54. Wang, L., Yan, W., He, C., Wen, H., Cai, Z., Wang, Z., Chen, Z., & Liu, W. (2018). Microwave-assisted preparation of nitrogen-doped biochars by ammonium acWTPte activation for adsorption of acid red 18. Applied Surface Science, 433, 222–231.

    CAS  Article  Google Scholar 

  55. Wołowiec, M., Komorowska-Kaufman, M., Pruss, A., Rzepa, G., & Bajda, T. (2019). Removal of heavy metals and metalloids from water using drinking water treatment residuals as adsorbents: A review. Minerals, 9(8), 487.

    Article  CAS  Google Scholar 

  56. Wolff, E., Schwabe, W. K., & Conceição, S. V. (2015). Utilization of water treatment plant sludge in structural ceramics. Journal of Cleaner Production, 96, 282–289.

    CAS  Article  Google Scholar 

  57. Wong, Y. C., Szeto, Y. S., Cheung, W., & McKay, G. (2004). Adsorption of acid dyes on chitosan equilibrium isotherm analyses. Process Biochemistry, 39(6), 695–704.

    Article  CAS  Google Scholar 

  58. Wu, G., Tan, X., Li, G., & Hu, C. (2010). Effect of preparation method on the physical and catalytic property of nanocrystalline Fe2O3. Journal of Alloys and Compounds, 504(2), 371–376.

    CAS  Article  Google Scholar 

  59. Xue, T., Gao, Y., Zhang, Z., Umar, A., Yan, X., Zhang, X., Guo, Z., & Wang, Q. (2014). Adsorption of acid red from dye wastewater by Zn2Al-NO3 LDHs and the resource of adsorbent sludge as nanofiller for polypropylene. Journal of Alloys and Compounds, 587, 99–104.

    CAS  Article  Google Scholar 

  60. Youcef, L. D., Belaroui, L. S., & López-Galindo, A. (2019). Adsorption of a cationic methylene blue dye on an Algerian palygorskite. Applied Clay Science, 179, 105145.

    Article  CAS  Google Scholar 

  61. Zeldowitsch, J. (1934). Über den mechanismus der katalytischen oxydation von CO an MnO2. Acta Physicochimica URSS, 1, 364–449.

    Google Scholar 

  62. Zhou, Y. F., Haynes, R. J., & Popov, V. (2010). Water treatment sludge can be used as an adsorbent for heavy metals in wastewater streams. Waste Management and the Environment, 140, 379–389.

    CAS  Google Scholar 

  63. Zhou, D., Wang, R., Tyrer, M., Wong, H., & Cheeseman, C. (2017). Sustainable infrastructure development through use of calcined excavated waste clay as a supplementary cementitious material. Journal of Cleaner Production, 168, 1180–1192.

    CAS  Article  Google Scholar 

  64. Zhu, K., Gong, X., He, D., Li, B., Ji, D., Li, P., Peng, Z., & Luo, Y. (2013). Adsorption of Ponceau 4R from aqueous solutions using alkali boiled Tilapia fish scales. RSC Advances, 47, 25221–25230.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guilherme Luiz Dotto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grassi, P., Foletto, E.L., Dotto, G.L. et al. Application of Thermally Treated Water Treatment Sludge as a Remarkable Adsorbent Towards Emerging Pollutant Removal from Aqueous Solution. Water Air Soil Pollut 232, 397 (2021). https://doi.org/10.1007/s11270-021-05354-2

Download citation

Keywords

  • Water treatment sludge
  • Calcined sludge
  • Adsorption
  • Acid red 97
  • Thermodynamics