Skip to main content
Log in

Opportunities and Challenges for Sustainable Bioremediation of Natural and Synthetic Estrogens as Emerging Water Contaminants Using Bacteria, Fungi, and Algae

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The occurrence of newly emerging contaminants such as estrogens in water environment has the potential negative effects to human health as well as the surrounding wildlife. This demands efficient approaches for their removals from the water environment. Among all feasible solutions, biodegradation shows promising prospects to remediate estrogens from the environment since it is relatively economical and environmentally friendly compared to chemical and physical treatment approaches. To offer coverage on the present advances of this technology, this paper critically reviews the opportunities and challenges for bioremediation of estrogens using bacteria, fungi, and algae. In general, the capabilities to remove estrogens from water environments by bacteria, fungi, and algae have been highlighted and discussed. Additionally, several advantages and disadvantages are recognized before they are implemented widely in full-scale treatments. Moreover, a comprehensive discussion on the transformation of estrogens using these organisms is also presented, showing vividly that estrogens can be transformed into less toxic chemicals. The review ends by offering several prospective areas for expansion in the future specifically in focusing on the evaluation of other available microorganisms that can survive under numerous hostile environmental conditions, since, in the real application, complex mixtures and extreme environmental conditions are commonly observed particularly in the wastewater treatment systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abou-Zeid, L. A., & El-Mowafy, A. M. (2002). Molecular dynamics simulation characteristics of resveratrol interaction with human estrogen receptor-α: Distinct recognition from diethylstilbestrol. Journal of Molecular Structure: THEOCHEM, 593, 39–48.

    Article  CAS  Google Scholar 

  • Adeel, M., Song, X., Wang, Y., Francis, D., & Yang, Y. (2017). Environmental impact of estrogens on human, animal and plant life: A critical review. Environment International, 99, 107–119.

    Article  CAS  Google Scholar 

  • Al Farraj, D. A., Elshikh, M. S., Al Khulaifi, M. M., Hadibarata, T., Yuniarto, A., & Syafiuddin, A. (2019a). Biotransformation and detoxification of antraquione dye green 3 using halophilic Hortaea sp. International Biodeterioration & Biodegradation, 140, 72–77.

    Article  CAS  Google Scholar 

  • Al Farraj, D. A., Hadibarata, T., Yuniarto, A., Syafiuddin, A., Surtikanti, H. K., Elshikh, M. S., Al Khulaifi, M. M., & Al-Kufaidy, R. (2019b). Characterization of pyrene and chrysene degradation by halophilic Hortaea sp. B15. Bioprocess and Biosystems Engineering, 42, 963–969.

    Article  CAS  Google Scholar 

  • Al Farraj, D. A., Hadibarata, T., Yuniarto, A., Alkufeidy, R. M., Alshammari, M. K., & Syafiuddin, A. (2020). Exploring the potential of halotolerant bacteria for biodegradation of polycyclic aromatic hydrocarbon. Bioprocess and Biosystems Engineering, 43, 2305–2314.

    Article  CAS  Google Scholar 

  • Al-Zuhair, S., & El-Naas, M. (2011). Immobilization of Pseudomonas putida in PVA gel particles for the biodegradation of phenol at high concentrations. Biochemical Engineering Journal, 56, 46–50.

    Article  CAS  Google Scholar 

  • Auriol, M., Filali-Meknassi, Y., Adams, C. D., Tyagi, R. D., Noguerol, T.-N., & Piña, B. (2008). Removal of estrogenic activity of natural and synthetic hormones from a municipal wastewater: Efficiency of horseradish peroxidase and laccase from Trametes versicolor. Chemosphere, 70, 445–452.

    Article  CAS  Google Scholar 

  • Badia-Fabregat, M., Lucas, D., Gros, M., Rodríguez-Mozaz, S., Barceló, D., Caminal, G., & Vicent, T. (2015). Identification of some factors affecting pharmaceutical active compounds (PhACs) removal in real wastewater. Case study of fungal treatment of reverse osmosis concentrate. Journal of Hazardous Materials, 283, 663–671.

    Article  CAS  Google Scholar 

  • Bai, X., & Acharya, K. (2019). Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga. Environmental Pollution, 247, 534–540.

    Article  CAS  Google Scholar 

  • Bai, L., Cao, C., Wang, C., Zhang, H., Deng, J., & Jiang, H. (2019). Response of bloom-forming cyanobacterium Microcystis aeruginosa to 17β-estradiol at different nitrogen levels. Chemosphere, 219, 174–182.

    Article  CAS  Google Scholar 

  • Ben Fredj, S., Nobbs, J., Tizaoui, C., & Monser, L. (2015). Removal of estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) from wastewater by liquid–liquid extraction. Chemical Engineering Journal, 262, 417–426.

    Article  CAS  Google Scholar 

  • Bronikowski, A., Hagedoorn, P.-L., Koschorreck, K., & Urlacher, V. B. (2017). Expression of a new laccase from Moniliophthora roreri at high levels in Pichia pastoris and its potential application in micropollutant degradation. AMB Express, 7, 1–13.

    Article  CAS  Google Scholar 

  • Carr, D. L., Morse, A. N., Zak, J. C. & Anderson, T. A. (2011). Microbially mediated degradation of common pharmaceuticals and personal care products in soil under aerobic and reduced oxygen conditions. Water, Air, and Soil Pollution, 216, 633–642.

  • Chen, Y., Zhang, C., & Li, Y. (2017a). Ultrasonic-assisted biodegradation of endocrine disrupting compounds by Pseudomonas putida the importance of rhamnolipid for intermediate product degradation. Chemical Research in Chinese Universities, 33, 179–186.

    Article  CAS  Google Scholar 

  • Chen, Y.-L., Yu, C.-P., Lee, T.-H., Goh, K.-S., Chu, K.-H., Wang, P.-H., Ismail, W., Shih, C.-J., & Chiang, Y.-R. (2017b). Biochemical mechanisms and catabolic enzymes involved in bacterial estrogen degradation pathways. Cell Chemical Biology, 24, 712–724.

    Article  CAS  Google Scholar 

  • Cumming, H., & Rücker, C. (2017). Octanol–water partition coefficient measurement by a simple 1h nmr method. ACS Omega, 2, 6244–6249.

    Article  CAS  Google Scholar 

  • Daâssi, D., Prieto, A., Zouari-Mechichi, H., Martínez, M. J., Nasri, M., & Mechichi, T. (2016). Degradation of bisphenol A by different fungal laccases and identification of its degradation products. International Biodeterioration & Biodegradation, 110, 181–188.

    Article  Google Scholar 

  • Dai, H., Gao, S., Lai, C., He, H., Han, F., & Pan, X. (2019). Biochar enhanced microbial degradation of 17β-estradiol. Environmental Science: Processes & Impacts, 21, 1736–1744.

    CAS  Google Scholar 

  • de Freitas, E. N., Bubna, G. A., Brugnari, T., Kato, C. G., Nolli, M., Rauen, T. G., Peralta Muniz Moreira, Rd. F., Peralta, R. A., Bracht, A., de Souza, C. G. M., & Peralta, R. M. (2017). Removal of bisphenol A by laccases from Pleurotus ostreatus and Pleurotus pulmonarius and evaluation of ecotoxicity of degradation products. Chemical Engineering Journal, 330, 1361–1369.

    Article  Google Scholar 

  • Della Greca, M., Pinto, G., Pistillo, P., Pollio, A., Previtera, L., & Temussi, F. (2008). Biotransformation of ethinylestradiol by microalgae. Chemosphere, 70, 2047–2053.

    Article  CAS  Google Scholar 

  • Dzieweczynski, T. L., & Kane, J. L. (2017). The bachelorette: Female Siamese fighting fish avoid males exposed to an estrogen mimic. Behavioural Processes, 140, 169–173.

    Article  Google Scholar 

  • Dzionek, A., Wojcieszyńska, D., Hupert-Kocurek, K., Adamczyk-Habrajska, M., & Guzik, U. (2018). Immobilization of Planococcus sp. S5 strain on the loofah sponge and its application in naproxen removal. Catalysts, 8, 1–17.

    Article  Google Scholar 

  • Eibes, G., Debernardi, G., Feijoo, G., Moreira, M. T., & Lema, J. M. (2011). Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase. Biodegradation, 22, 539–550.

    Article  CAS  Google Scholar 

  • Eltoukhy, A., Jia, Y., Nahurira, R., Abo-Kadoum, M. A., Khokhar, I., Wang, J., & Yan, Y. (2020). Biodegradation of endocrine disruptor bisphenol A by Pseudomonas putida strain YC-AE1 isolated from polluted soil, Guangdong, China. BMC Microbiology, 20, 1–14.

    Article  Google Scholar 

  • Fan, Z., Hu, J., An, W., & Yang, M. (2013). Detection and occurrence of chlorinated byproducts of bisphenol A, nonylphenol, and estrogens in drinking water of China: Comparison to the parent compounds. Environmental Science & Technology, 47, 10841–10850.

    Article  CAS  Google Scholar 

  • Fernández, L., Louvado, A., Esteves, V. I., Gomes, N. C. M., Almeida, A., & Cunha, Â. (2017). Biodegradation of 17β-estradiol by bacteria isolated from deep sea sediments in aerobic and anaerobic media. Journal of Hazardous Materials, 323, 359–366.

    Article  Google Scholar 

  • Fonseca, A. P., Lima, D. L. D., & Esteves, V. I. (2011). Degradation by solar radiation of estrogenic hormones monitored by uv–visible spectroscopy and capillary electrophoresis. Water, Air, and Soil Pollution, 215, 441–447.

    Article  CAS  Google Scholar 

  • Golveia, J. C. S., Santiago, M. F., Sales, P. T. F., Sartoratto, A., Ponezi, A. N., Thomaz, D. V., Gil, Ed. S., & Bara, M. T. F. (2018). Cupuaçu (Theobroma grandiflorum) residue and its potential application in the bioremediation of 17-Α-ethinylestradiol as a Pycnoporus sanguineus laccase inducer. Preparative Biochemistry and Biotechnology, 48, 541–548.

    Article  CAS  Google Scholar 

  • Hadibarata, T., Syafiuddin, A., Al-Dhabaan, F. A., Elshikh, M. S., & Rubiyatno. (2018). Biodegradation of Mordant orange-1 using newly isolated strain Trichoderma harzianum RY44 and its metabolite appraisal. Bioprocess and Biosystems Engineering, 41, 621–632.

    Article  CAS  Google Scholar 

  • Hallgren, P., Nicolle, A., Hansson, L.-A., Brönmark, C., Nikoleris, L., Hyder, M., & Persson, A. (2014). Synthetic estrogen directly affects fish biomass and may indirectly disrupt aquatic food webs. Environmental Toxicology and Chemistry, 33, 930–936.

    Article  CAS  Google Scholar 

  • Hitzfeld, B. C., Höger, S. J., & Dietrich, D. R. (2000). Cyanobacterial toxins: Removal during drinking water treatment, and human risk assessment. Environmental Health Perspectives, 108, 113–122.

    CAS  Google Scholar 

  • Hom-Diaz, A., Llorca, M., Rodríguez-Mozaz, S., Vicent, T., Barceló, D., & Blánquez, P. (2015). Microalgae cultivation on wastewater digestate: β-estradiol and 17α-ethynylestradiol degradation and transformation products identification. Journal of Environmental Management, 155, 106–113.

    Article  CAS  Google Scholar 

  • Huang, B., Tang, J., He, H., Gu, L., & Pan, X. (2019). Ecotoxicological effects and removal of 17β-estradiol in chlorella algae. Ecotoxicology and Environmental Safety, 174, 377–383.

    Article  CAS  Google Scholar 

  • Ivanov, V., Lim, J.J.-W., Stabnikova, O., & Gin, K.Y.-H. (2010). Biodegradation of estrogens by facultative anaerobic iron-reducing bacteria. Process Biochemistry, 45, 284–287.

    Article  CAS  Google Scholar 

  • Ji, M.-K., Kabra, A. N., Choi, J., Hwang, J.-H., Kim, J. R., Abou-Shanab, R. A. I., Oh, Y.-K., & Jeon, B.-H. (2014). Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris. Ecological Engineering, 73, 260–269.

    Article  Google Scholar 

  • Jiang, B., Li, A., Cui, D., Cai, R., Ma, F., & Wang, Y. (2014). Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a newly isolated cold-adapted sulfamethoxazole-degrading bacterium. Applied Microbiology and Biotechnology, 98, 4671–4681.

    Article  CAS  Google Scholar 

  • Jiang, L., Gu, Y., Guo, H., Liu, L., & Chen, J. (2017). Efficient removal of 17α-ethinylestradiol (EE2) from water using freshly formed Fe–Mn binary oxide. RSC Advances, 7, 23802–23811.

    Article  Google Scholar 

  • Ke, J., Zhuang, W., Gin, K.Y.-H., Reinhard, M., Hoon, L. T., & Tay, J.-H. (2007). Characterization of estrogen-degrading bacteria isolated from an artificial sandy aquifer with ultrafiltered secondary effluent as the medium. Applied Microbiology and Biotechnology, 75, 1163–1171.

    Article  CAS  Google Scholar 

  • Khunjar, W. O., Mackintosh, S. A., Skotnicka-Pitak, J., Baik, S., Aga, D. S., & Love, N. G. (2011). Elucidating the relative roles of ammonia oxidizing and heterotrophic bacteria during the biotransformation of 17α-ethinylestradiol and trimethoprim. Environmental Science & Technology, 45, 3605–3612.

    Article  CAS  Google Scholar 

  • Kozlova, T. A., Hardy, B. P., & Levin, D. B. (2020). Effect of fish steroids 17β-estradiol and 17,20β-dihydroxy-4-pregnen-3-one on growth, accumulation of pigments, and fatty acid profiles in the microalgae Scenedesmus quadricauda (CPCC-158). Renewable Energy, 148, 798–806.

    Article  CAS  Google Scholar 

  • Křesinová, Z., Moeder, M., Ezechiáš, M., Svobodová, K., & Cajthaml, T. (2012a). Mechanistic study of 17α-ethinylestradiol biodegradation by Pleurotus ostreatus: Tracking of extracelullar and intracelullar degradation mechanisms. Environmental Science & Technology, 46, 13377–13385.

    Article  Google Scholar 

  • Křesinová, Z., Moeder, M., Ezechiáš, M., Svobodová, K., & Cajthaml, T. (2012b). Mechanistic study of 17α-ethinylestradiol biodegradation by pleurotus ostreatus: Tracking of extracelullar and intracelullar degradation mechanisms. Environmental Science and Technology, 46, 13377–13385.

    Article  Google Scholar 

  • Křesinová, Z., Linhartová, L., Filipová, A., Ezechiáš, M., Mašín, P., & Cajthaml, T. (2018). Biodegradation of endocrine disruptors in urban wastewater using Pleurotus ostreatus bioreactor. New Biotechnology, 43, 53–61.

    Article  Google Scholar 

  • Kurisu, F., Ogura, M., Saitoh, S., Yamazoe, A., & Yagi, O. (2010). Degradation of natural estrogen and identification of the metabolites produced by soil isolates of Rhodococcus sp. and Sphingomonas sp. Journal of Bioscience and Bioengineering, 109, 576–582.

    Article  CAS  Google Scholar 

  • Kwarciak-Kozłowska, A. (2019) Pharmaceuticals and personal care products: Waste management and treatment technology. In Prasad, M. N. V., Vithanage, M. and Kapley, A. (Eds.), pp. 151–171. Butterworth-Heinemann.

  • Lai, K. M., Johnson, K. L., Scrimshaw, M. D., & Lester, J. N. (2000). Binding of waterborne steroid estrogens to solid phases in river and estuarine systems. Environmental Science & Technology, 34, 3890–3894.

    Article  CAS  Google Scholar 

  • Larcher, S., & Yargeau, V. (2013a). Biodegradation of 17α-ethinylestradiol by heterotrophic bacteria. Environmental Pollution, 173, 17–22.

    Article  CAS  Google Scholar 

  • Larcher, S., & Yargeau, V. (2013b). The effect of ozone on the biodegradation of 17α-ethinylestradiol and sulfamethoxazole by mixed bacterial cultures. Applied Microbiology and Biotechnology, 97, 2201–2210.

    Article  CAS  Google Scholar 

  • Lei, B., Wen, Y., Wang, X., Zha, J., Li, W., Wang, Z., Sun, Y., Kang, J., & Wang, Y. (2013). Effects of estrone on the early life stages and expression of vitellogenin and estrogen receptor genes of Japanese medaka (Oryzias latipes). Chemosphere, 93, 1104–1110.

    Article  CAS  Google Scholar 

  • Li, Y., & Zhang, A. (2014). Removal of steroid estrogens from waste activated sludge using Fenton oxidation: Influencing factors and degradation intermediates. Chemosphere, 105, 24–30.

    Article  CAS  Google Scholar 

  • Li, G., Zu, L., Wong, P.-K., Hui, X., Lu, Y., Xiong, J., & An, T. (2012a). Biodegradation and detoxification of bisphenol A with one newly-isolated strain Bacillus sp. GZB: Kinetics, mechanism and estrogenic transition. Bioresource Technology, 114, 224–230.

    Article  CAS  Google Scholar 

  • Li, Z., Nandakumar, R., Madayiputhiya, N., & Li, X. (2012b). Proteomic analysis of 17β-estradiol degradation by Stenotrophomonas maltophilia. Environmental Science & Technology, 46, 5947–5955.

    Article  CAS  Google Scholar 

  • Li, S., Liu, J., Sun, M., Ling, W., & Zhu, X. (2017). Isolation, characterization, and degradation performance of the 17β-estradiol-degrading bacterium Novosphingobium sp. E2S. International Journal of Environmental Research and Public Health, 14, 1–13.

    Article  Google Scholar 

  • Li, M., Zhao, X., Zhang, X., Wu, D., & Leng, S. (2018). Biodegradation of 17β-estradiol by bacterial co-culture isolated from manure. Scientific Reports, 8, 1–8.

    Google Scholar 

  • Li, S., Liu, J., Sun, K., Yang, Z., & Ling, W. (2020). Degradation of 17β-estradiol by Novosphingobium sp. ES2-1 in aqueous solution contaminated with tetracyclines. Environmental Pollution, 260, 1–11.

    Article  Google Scholar 

  • Ling, W. T., Xu, R. F., Liu, J., Sun, M. X., Li, S. Y., Zhu, X. Z., & Gao, Y. Z. (2016). Immobilization and degradation performance of diethylstilbestrol-degrading bacteria S (Serratia sp.). Zhongguo Huanjing Kexue/china Environmental Science, 36, 1514–1519.

    CAS  Google Scholar 

  • Liu, J., Liu, J., Xu, D., Ling, W., Li, S., & Chen, M. (2016a). Isolation, immobilization, and degradation performance of the 17β-estradiol-degrading bacterium Rhodococcus sp. JX-2. Water, Air, and Soil Pollution, 227, 1–13.

    Article  Google Scholar 

  • Liu, J., Luo, Q., & Huang, Q. (2016b). Removal of 17 β-estradiol from poultry litter via solid state cultivation of lignolytic fungi. Journal of Cleaner Production, 139, 1400–1407.

    Article  CAS  Google Scholar 

  • Liu, J., Li, S., Li, X., Gao, Y., & Ling, W. (2018a). Removal of estrone, 17β-estradiol, and estriol from sewage and cow dung by immobilized Novosphingobium sp. ARI-1. Environmental Technology, 39, 2423–2433.

    Article  CAS  Google Scholar 

  • Liu, W., Chen, Q., He, N., Sun, K., Sun, D., Wu, X., & Duan, S. (2018b). Removal and biodegradation of 17β-estradiol and diethylstilbestrol by the freshwater microalgae Raphidocelis subcapitata. International Journal of Environmental Research and Public Health, 15, 452.

    Article  Google Scholar 

  • Liu, N., Shi, Y.-E., Li, J., Zhu, M., & Zhang, T. (2020). Isolation and characterization of a new highly effective 17β-estradiol-degrading Gordonia sp. strain R9. 3 Biotech, 10, 1–10.

    Article  Google Scholar 

  • Lloret, L., Eibes, G., Lú-Chau, T. A., Moreira, M. T., Feijoo, G., & Lema, J. M. (2010). Laccase-catalyzed degradation of anti-inflammatories and estrogens. Biochemical Engineering Journal, 51, 124–131.

    Article  CAS  Google Scholar 

  • Lloret, L., Eibes, G., Feijoo, G., Moreira, M. T., & Lema, J. M. (2012). Degradation of estrogens by laccase from Myceliophthora thermophila in fed-batch and enzymatic membrane reactors. Journal of Hazardous Materials, 213–214, 175–183.

    Article  Google Scholar 

  • Loffredo, E., Castellana, G., & Taskin, E. (2016). A two-step approach to eliminate pesticides and estrogens from a wastewater and reduce its phytotoxicity: Adsorption onto plant-derived materials and fungal degradation. Water, Air, and Soil Pollution, 227, 188.

    Article  Google Scholar 

  • Ma, L., & Yates, S. R. (2017). Degradation and metabolite formation of estrogen conjugates in an agricultural soil. Journal of Pharmaceutical and Biomedical Analysis, 145, 634–640.

    Article  CAS  Google Scholar 

  • Ma, C., Qin, D., Sun, Q., Zhang, F., Liu, H., & Yu, C.-P. (2016). Removal of environmental estrogens by bacterial cell immobilization technique. Chemosphere, 144, 607–614.

    Article  CAS  Google Scholar 

  • Ma, W., Sun, J., Li, Y., Lun, X., Shan, D., Nie, C., & Liu, M. (2018). 17α-Ethynylestradiol biodegradation in different river-based groundwater recharge modes with reclaimed water and degradation-associated community structure of bacteria and archaea. Journal of Environmental Sciences, 64, 51–61.

    Article  Google Scholar 

  • Maes, H. M., Maletz, S. X., Ratte, H. T., Hollender, J., & Schaeffer, A. (2014). Uptake, elimination, and biotransformation of 17α-ethinylestradiol by the freshwater alga Desmodesmus subspicatus. Environmental Science & Technology, 48, 12354–12361.

    Article  CAS  Google Scholar 

  • Mao, L., Huang, Q., Luo, Q., Lu, J., Yang, X., & Gao, S. (2010). Ligninase-mediated removal of 17β-estradiol from water in the presence of natural organic matter: Efficiency and pathways. Chemosphere, 80, 469–473.

    Article  CAS  Google Scholar 

  • Menk, Jd. J., do Nascimento, A. I. S., Leite, F. G., de Oliveira, R. A., Jozala, A. F., de Oliveira Junior, J. M., Chaud, M. V., & Grotto, D. (2019). Biosorption of pharmaceutical products by mushroom stem waste. Chemosphere, 237, 124515.

    Article  CAS  Google Scholar 

  • Morishima, F., Inokuchi, Y., & Ebata, T. (2013). Structure and hydrogen-bonding ability of estrogens studied in the gas phase. The Journal of Physical Chemistry A, 117, 13543–13555.

    Article  CAS  Google Scholar 

  • Muller, M., Patureau, D., Godon, J.-J., Delgenès, J.-P., & Hernandez-Raquet, G. (2010). Molecular and kinetic characterization of mixed cultures degrading natural and synthetic estrogens. Applied Microbiology and Biotechnology, 85, 691–701.

    Article  CAS  Google Scholar 

  • Nakai, S., Yamamura, A., Tanaka, S., Shi, J., Nishikawa, M., Nakashimada, Y., & Hosomi, M. (2011). Pathway of 17β-estradiol degradation by Nitrosomonas europaea and reduction in 17β-estradiol-derived estrogenic activity. Environmental Chemistry Letters, 9, 1–6.

    Article  CAS  Google Scholar 

  • Pauwels, B., Wille, K., Noppe, H., De Brabander, H., Van de Wiele, T., Verstraete, W., & Boon, N. (2008). 17α-ethinylestradiol cometabolism by bacteria degrading estrone, 17β-estradiol and estriol. Biodegradation, 19, 683–693.

    Article  CAS  Google Scholar 

  • Pratush, A., Yang, Q., Peng, T., Huang, T., & Hu, Z. (2020). Identification of non-accumulating intermediate compounds during estrone (E1) metabolism by a newly isolated microbial strain BH2-1 from mangrove sediments of the South China Sea. Environmental Science and Pollution Research, 27, 5097–5107.

    Article  CAS  Google Scholar 

  • Rodríguez-Rodríguez, C. E., Marco-Urrea, E., & Caminal, G. (2010). Degradation of naproxen and carbamazepine in spiked sludge by slurry and solid-phase Trametes versicolor systems. Bioresource Technology, 101, 2259–2266.

    Article  Google Scholar 

  • Roh, H., & Chu, K.-H. (2010). A 17β-estradiol-utilizing bacterium, Sphingomonas strain KC8: Part I - characterization and abundance in wastewater treatment plants. Environmental Science & Technology, 44, 4943–4950.

    Article  CAS  Google Scholar 

  • Różalska, S., Bernat, P., Michnicki, P., & Długoński, J. (2015). Fungal transformation of 17α-ethinylestradiol in the presence of various concentrations of sodium chloride. International Biodeterioration & Biodegradation, 103, 77–84.

    Article  Google Scholar 

  • Ruksrithong, C., & Phattarapattamawong, S. (2019). Removals of estrone and 17β-estradiol by microalgae cultivation: Kinetics and removal mechanisms. Environmental Technology, 40, 163–170.

    Article  CAS  Google Scholar 

  • Rzymski, P., Niedzielski, P., Karczewski, J., & Poniedziałek, B. (2014). Biosorption of toxic metals using freely suspended Microcystis aeruginosa biomass. Central European Journal of Chemistry, 12, 1232–1238.

    CAS  Google Scholar 

  • Sami, N., & Fatma, T. (2019). Studies on estrone biodegradation potential of cyanobacterial species. Biocatalysis and Agricultural Biotechnology, 17, 576–582.

    Article  Google Scholar 

  • Sami, N., Ansari, S., Yasin, D., & Fatma, T. (2020). Estrone degrading enzymes of Spirulina CPCC-695 and synthesis of bioplastic precursor as a by-product. Biotechnology Reports, 26, 1–8.

    Article  Google Scholar 

  • Schäfer, A. I., Akanyeti, I., & Semião, A. J. C. (2011). Micropollutant sorption to membrane polymers: A review of mechanisms for estrogens. Advances in Colloid and Interface Science, 164, 100–117.

    Article  Google Scholar 

  • Sedighi, M., Nasseri, S., & Ghotbi-Ravandi, A. A. (2019). Degradation of 17α-ethinylestradiol by Enterobacter tabaci isolate and kinetic characterization. Environmental Processes, 6, 741–755.

    Article  CAS  Google Scholar 

  • Selcer, K. W., & Verbanic, J. D. (2014). Vitellogenin of the northern leopard frog (Rana pipiens): Development of an ELISA assay and evaluation of induction after immersion in xenobiotic estrogens. Chemosphere, 112, 348–354.

    Article  CAS  Google Scholar 

  • Shareef, A., Angove, M. J., Wells, J. D., & Johnson, B. B. (2006). Aqueous solubilities of estrone, 17β-estradiol, 17α-ethynylestradiol, and bisphenol A. Journal of Chemical and Engineering Data, 51, 879–881.

    Article  CAS  Google Scholar 

  • Shi, W., Wang, L., Rousseau, D. P. L., & Lens, P. N. L. (2010). Removal of estrone, 17α-ethinylestradiol, and 17ß-estradiol in algae and duckweed-based wastewater treatment systems. Environmental Science and Pollution Research, 17, 824–833.

    Article  CAS  Google Scholar 

  • Simpson, E. R. (2003). Sources of estrogen and their importance. The Journal of Steroid Biochemistry and Molecular Biology, 86, 225–230.

    Article  CAS  Google Scholar 

  • Solé, A., & Matamoros, V. (2016). Removal of endocrine disrupting compounds from wastewater by microalgae co-immobilized in alginate beads. Chemosphere, 164, 516–523.

    Article  Google Scholar 

  • Sun, K., Chen, H., Zhang, Q., Li, S., Liu, Q., & Si, Y. (2020a). Influence of humic acids on fungal laccase-initiated 17α-ethynylestradiol oligomerization: Transformation kinetics and products distribution. Chemosphere, 258, 127371.

    Article  CAS  Google Scholar 

  • Sun, K., Cheng, X., Yu, J., Chen, L., Wei, J., Chen, W., Wang, J., Li, S., Liu, Q., & Si, Y. (2020b). Isolation of Trametes hirsuta La-7 with high laccase-productivity and its application in metabolism of 17β-estradiol. Environmental Pollution, 263, 114381.

    Article  CAS  Google Scholar 

  • Sun, S.-X., Wu, J.-L., Lv, H.-B., Zhang, H.-Y., Zhang, J., Limbu, S. M., Qiao, F., Chen, L.-Q., Yang, Y., Zhang, M.-L., & Du, Z.-Y. (2020c). Environmental estrogen exposure converts lipid metabolism in male fish to a female pattern mediated by AMPK and mTOR signaling pathways. Journal of Hazardous Materials, 394, 122537.

    Article  CAS  Google Scholar 

  • Suri, R. P. S., Singh, T. S., & Abburi, S. (2010). Influence of alkalinity and salinity on the sonochemical degradation of estrogen hormones in aqueous solution. Environmental Science & Technology, 44, 1373–1379.

    Article  CAS  Google Scholar 

  • Syafiuddin, A., & Fulazzaky, M. A. (2021). Decolorization kinetics and mass transfer mechanisms of Remazol Brilliant Blue R dye mediated by different fungi. Biotechnology Reports, 29, e00573.

    Article  Google Scholar 

  • Syafiuddin, A., Salmiati, S., Hadibarata, T., Kueh, A. B. H., Salim, M. R., & Zaini, M. A. A. (2018). Silver nanoparticles in the water environment in Malaysia: Inspection, characterization, removal, modeling, and future perspective. Scientific Reports, 8, 1–15.

    Article  CAS  Google Scholar 

  • Syafiuddin, A., Salmiati, S., Hadibarata, T., Salim, M. R., Kueh, A. B. H., & Suhartono, S. (2019). Removal of silver nanoparticles from water environment: Experimental, mathematical formulation, and cost analysis. Water, Air, and Soil Pollution, 230, 102–117.

    Article  Google Scholar 

  • Syafiuddin, A., Fulazzaky, M. A., Salmiati, S., Kueh, A. B. H., Fulazzaky, M., & Salim, M. R. (2020). Silver nanoparticles adsorption by the synthetic and natural adsorbent materials: An exclusive review. Nanotechnology for Environmental Engineering, 5, 1–18.

    Article  CAS  Google Scholar 

  • Vasiliadou, I. A., Sánchez-Vázquez, R., Molina, R., Martínez, F., Melero, J. A., Bautista, L. F., Iglesias, J., & Morales, G. (2016). Biological removal of pharmaceutical compounds using white-rot fungi with concomitant FAME production of the residual biomass. Journal of Environmental Management, 180, 228–237.

    Article  CAS  Google Scholar 

  • Vo, H. N. P., Ngo, H. H., Guo, W., Nguyen, K. H., Chang, S. W., Nguyen, D. D., Liu, Y., Liu, Y., Ding, A., & Bui, X. T. (2020). Micropollutants cometabolism of microalgae for wastewater remediation: Effect of carbon sources to cometabolism and degradation products. Water Research, 183, 115974.

    Article  CAS  Google Scholar 

  • Vymazal, J., Březinová, T., & Koželuh, M. (2015). Occurrence and removal of estrogens, progesterone and testosterone in three constructed wetlands treating municipal sewage in the Czech Republic. Science of the Total Environment, 536, 625–631.

    Article  CAS  Google Scholar 

  • Wang, P., Wong, Y.-S., & Tam, N.F.-Y. (2017). Green microalgae in removal and biotransformation of estradiol and ethinylestradiol. Journal of Applied Phycology, 29, 263–273.

    Article  CAS  Google Scholar 

  • Wang, P., Zheng, D., & Liang, R. (2019a). Isolation and characterization of an estrogen-degrading Pseudomonas putida strain SJTE-1. 3 Biotech, 9, 61.

    Article  Google Scholar 

  • Wang, Y., Sun, Q., Li, Y., Wang, H., Wu, K., & Yu, C.-P. (2019b). Biotransformation of estrone, 17β-estradiol and 17α-ethynylestradiol by four species of microalgae. Ecotoxicology and Environmental Safety, 180, 723–732.

    Article  CAS  Google Scholar 

  • Wang, R., Li, F., Ruan, W., Tai, Y., Cai, H., & Yang, Y. (2020a). Removal and degradation pathway analysis of 17β-estradiol from raw domestic wastewater using immobilised functional microalgae under repeated loading. Biochemical Engineering Journal, 161, 107700.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhao, X., Tian, K., Meng, F., Zhou, D., Xu, X., Zhang, H., & Huo, H. (2020b). Identification and genome analysis of a novel 17β-estradiol degradation bacterium, Lysinibacillus sphaericus DH-B01. 3 Biotech, 10, 166.

    Article  CAS  Google Scholar 

  • Wu, M. L., Zhu, C. C., Qi, Y. Y., Shi, Y. X., Xu, H. N., & Yang, J. R. (2018). Isolation, identification and degradation characteristics of a 17β-estradiol degrading strain Fusarium sp. KY123915. Huanjing Kexue/environmental Science, 39, 4802–4808.

    Google Scholar 

  • Xiong, W., Peng, W., & Liang, R. (2018). Identification and genome analysis of Deinococcus actinosclerus SJTR1, a novel 17β-estradiol degradation bacterium. 3 Biotech, 8, 433.

    Article  Google Scholar 

  • Xiong, W., Yin, C., Peng, W., Deng, Z., Lin, S., & Liang, R. (2020a). Characterization of an 17β-estradiol-degrading bacterium Stenotrophomonas maltophilia SJTL3 tolerant to adverse environmental factors. Applied Microbiology and Biotechnology, 104, 1291–1305.

    Article  CAS  Google Scholar 

  • Xiong, W., Yin, C., Wang, Y., Lin, S., Deng, Z., & Liang, R. (2020b). Characterization of an efficient estrogen-degrading bacterium Stenotrophomonas maltophilia SJTH1 in saline-, alkaline-, heavy metal-contained environments or solid soil and identification of four 17β-estradiol-oxidizing dehydrogenases. Journal of Hazardous Materials, 385, 121616.

    Article  CAS  Google Scholar 

  • Ye, X., Wang, H., Kan, J., Li, J., Huang, T., Xiong, G., & Hu, Z. (2017). A novel 17β-hydroxysteroid dehydrogenase in Rhodococcus sp. P14 for transforming 17β-estradiol to estrone. Chemico-Biological Interactions, 276, 105–112.

    Article  CAS  Google Scholar 

  • Ye, X., Peng, T., Feng, J., Yang, Q., Pratush, A., Xiong, G., Huang, T., & Hu, Z. (2019). A novel dehydrogenase 17β-HSDx from Rhodococcus sp. P14 with potential application in bioremediation of steroids contaminated environment. Journal of Hazardous Materials, 362, 170–177.

    Article  CAS  Google Scholar 

  • Yu, W., Du, B., Yang, L., Zhang, Z., Yang, C., Yuan, S., & Zhang, M. (2019). Occurrence, sorption, and transformation of free and conjugated natural steroid estrogens in the environment. Environmental Science and Pollution Research, 26, 9443–9468.

    Article  CAS  Google Scholar 

  • Zhang, J., Zheng, J.-W., Liang, B., Wang, C.-H., Cai, S., Ni, Y.-Y., He, J., & Li, S.-P. (2011). Biodegradation of chloroacetamide herbicides by Paracoccus sp. FLY-8 in vitro. Journal of Agricultural and Food Chemistry, 59, 4614–4621.

    Article  CAS  Google Scholar 

  • Zhang, W., Niu, Z., Liao, C., & Chen, L. (2013). Isolation and characterization of Pseudomonas sp. strain capable of degrading diethylstilbestrol. Applied Microbiology and Biotechnology, 97, 4095–4104.

    Article  CAS  Google Scholar 

  • Zhang, Y., Habteselassie, M. Y., Resurreccion, E. P., Mantripragada, V., Peng, S., Bauer, S., & Colosi, L. M. (2014). Evaluating removal of steroid estrogens by a model alga as a possible sustainability benefit of hypothetical integrated algae cultivation and wastewater treatment systems. ACS Sustainable Chemistry & Engineering, 2, 2544–2553.

    Article  CAS  Google Scholar 

  • Zhao, X., Wang, Y., Xu, X., Tian, K., Zhou, D., Meng, F., Zhang, H., & Huo, H. (2020). Genomics analysis of the steroid estrogen-degrading bacterium Serratia nematodiphila DH-S01. Biotechnology & Biotechnological Equipment, 34, 430–440.

    Article  Google Scholar 

  • Zhou, L., Luo, Q., Lu, J., & Huang, Q. (2015). Transformation of 17β-estradiol by Phanerochaete chrysosporium in different culture media. Bulletin of Environmental Contamination and Toxicology, 95, 265–271.

Download references

Acknowledgements

The authors thank the Universitas Nahdlatul Ulama Surabaya for facilitating the present work. A great collaborative effort from the Institut Teknologi Sepuluh Nopember, Curtin University Malaysia, and Universiti Malaysia Sarawak in realizing the current review is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achmad Syafiuddin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratnasari, A., Syafiuddin, A., Kueh, A.B.H. et al. Opportunities and Challenges for Sustainable Bioremediation of Natural and Synthetic Estrogens as Emerging Water Contaminants Using Bacteria, Fungi, and Algae. Water Air Soil Pollut 232, 242 (2021). https://doi.org/10.1007/s11270-021-05183-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05183-3

Keywords

Navigation