Skip to main content
Log in

Road Salting Induces Regional-Scale Losses of Base Cations from Forested Watersheds

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Road salt (NaCl) and acid deposition co-occur across much of North America and Europe. One such region is the Adirondack Park (AP) in New York, USA, where the effects of acid deposition have been widely studied and the effects of road salt have not. Road salt delivers 3560 Mmolc of Na to AP roads each year, which has significant potential to displace soil base cations and exacerbate ecosystem recovery from acidification. Our objective was to estimate the effect of road salt on soil base cation export for the AP. We used a simple steady state model based on estimated runoff and cation concentrations from lakes in watersheds with (n=84) and without (n=68) paved roads to estimate watershed export of Ca, Mg, K, and Na. Road salting resulted in significantly higher export for all cations, with 28, 15, 2, and 83 mmolc/m2/year more of Ca, Mg, K, and Na released, respectively, compared to watersheds without paved roads. Mineral weathering rates are insufficient to replace these lost cations and thus watershed recovery from acidification will be slower in the presence of road salt. Road salt should be included as a co-occurring stressor when assessing the impacts of pollutants on ecosystem health, not only in the AP but wherever road salt is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akselsson, C., Hultberg, H., Karlsson, P. E., Karlsson, G. P., & Hellsten, S. (2013). Acidification trends in south Swedish forest soils 1986–2008—Slow recovery and high sensitivity to sea-salt episodes. Science of the Total Environment, 444, 271–287.

    Article  CAS  Google Scholar 

  • ALTM. (2020). Adirondack Long Term Monitoring Program. Adirondack Lakes Survey Corporation, Ray Brook, NY 12977. http://www.adirondacklakessurvey.org/. Accessed 13 December 2020.

  • AWI. (2020). Adirondack Watershed Institute. Paul Smith’s College, Paul Smiths, NY 12970. https://www.adkwatershed.org/https%3A/www.adkwatershed.org/research/water-quality. Accessed 13 December 2020.

  • Cooper, C. A., Mayer, P. M., & Faulkner, B. R. (2014). Effects of road salts on groundwater and surface water dynamics of sodium and chloride in an urban restored stream. Biogeochemistry, 121, 149–166.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Newton, R. M., Gubala, C. P., Baker, J. P., & Christensen, S. W. (1991). Adirondack Mountains. In D. F. Charles (Ed.), Acid deposition and aquatic ecosystems (pp. 133–202). Springer-Verlag.

  • Driscoll, C. T., Driscoll, K. M., Roy, K. M., & Dukett, J. (2007). Changes in the chemistry of lakes in the Adirondack region of New York following declines in acidic deposition. Applied Geochemistry, 22, 1181–1188.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Driscoll, K. M., Fakhraei, H., & Civerolo, K. (2016). Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition. Atmospheric Environment, 146, 5–14.

    Article  CAS  Google Scholar 

  • Dugan, H. A., Bartlett, S. L., Burke, S. M., Doubek, J. P., Krivak-Tetley, F. E., Skaff, N. K., Summers, J. C., Farrell, K. J., McCullough, I. M., Morales-Williams, A. M., & Roberts, D. C. (2017). Salting our freshwater lakes. Proceedings of the National Academy of Sciences, 114, 4453–4458.

    Article  CAS  Google Scholar 

  • Equiza, M. A., Calvo-Polanco, M., Cirelli, D., Señorans, J., Wartenbe, M., Saunders, C., & Zwiazek, J. J. (2017). Long-term impact of road salt (NaCl) on soil and urban trees in Edmonton, Canada. Urban Forestry & Urban Greening, 21, 16–28.

    Article  Google Scholar 

  • Fanning, D. S., & Fanning, M. C. B. (1989). Soil morphology, genesis and classification. John Wiley & Sons.

  • Gbondo-Tugbawa, S. S., Driscoll, C. T., Aber, J. D., & Likens, G. E. (2001). The evaluation of an integrated biogeochemical model (PnET-BGC) at a northern hardwood forest ecosystem. Water Resources Research, 35, 1057–1070.

    Article  Google Scholar 

  • Gebert, W. A., Graczyk, D. J., & Krug, W. R. (1987). Average annual runoff in the United States 1951-80. US Geological Survey Hydrologic Investigations, Atlas HA-710.

  • Godwin, K. S., Hafner, S. D., & Buff, M. F. (2003). Long-term trends in sodium and chloride in the Mohawk River New York: The effect of fifty years of road-salt application. Environmental Pollution, 124, 273–281.

    Article  CAS  Google Scholar 

  • Greaver, T. L., Sullivan, T. J., Herrick, J. D., Barber, M. C., Baron, J. S., Cosby, B. J., Deerhake, M. E., Dennis, R. L., Dubois, J. J. B., Goodale, C. L., & Herlihy, A. T. (2012). Ecological effects of nitrogen and sulfur air pollution in the US: What do we know? Frontiers in Ecology and the Environment, 10, 365–372.

    Article  Google Scholar 

  • Howard, K. W. F., & Beck, P. J. (1993). Hydrogeochemical implications of groundwater contamination by road de-icing chemicals. Journal of Contaminant Hydrology, 12, 245–268.

    Article  CAS  Google Scholar 

  • Ito, M., Mitchell, M. J., & Driscoll, C. T. (2002). Spatial patterns of precipitation quantity and chemistry and air temperature in the Adirondack region of New York. Atmospheric Environment, 36, 1051–1062.

    Article  CAS  Google Scholar 

  • Johnson, D. W., & Lindberg, S. E. (1992). Atmospheric deposition and forest nutrient cycling ecological studies 91. Springer-Verlag.

  • Karraker, N. E., Gibbs, J. P., & Vonesh, J. R. (2008). Impacts of road deicing salt on the demography of vernal pool-breeding amphibians. Ecological Applications, 18(3), 724–734.

    Article  Google Scholar 

  • Kaushal, S. S., Duan, S., Doody, T. R., Haq, S., Smith, R. M., Johnson, T. A. N., Newcomb, K. D., Gorman, J., Bowman, N., Mayer, P. M., & Wood, K. L. (2017). Human-accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use. Applied Geochemistry, 83, 121–135.

    Article  CAS  Google Scholar 

  • Kaushal, S. S., Likens, G. E., Pace, M. L., Utz, R. M., Haq, S., Gorman, J., & Grese, M. (2018). Freshwater salinization syndrome on a continental scale. Proceedings of the National Academy of Sciences, 115, E574–E583.

    Article  CAS  Google Scholar 

  • Kelsey, P. D., & Hootman, R. G. (1992). Deicing salt dispersion and effects on vegetation along highways. Case study: Deicing salt deposition on the Morton Arboretum. In Chemical Deicers and the Environment Proceedings of Alternative Deicing Technologies and the Environment, East Lansing, MI, USA, 25–26 March 1991. Lewis Publishers, Inc..

  • Kelting, D. L., Laxson, C. L., & Yerger, E. C. (2012). Regional analysis of the effect of paved roads on sodium and chloride in lakes. Water Research, 46, 2749–2758.

    Article  CAS  Google Scholar 

  • Kretser, W. J., Gallagher, J., & Nicolette, J. (1989). An evaluation of fish communities and water chemistry. Adirondack Lakes Survey Corporation.

  • Lawrence, G. B., Hazlett, P. W., Fernandez, I. J., Ouimet, R., Bailey, S. W., Shortle, W. C., Smith, K. T., & Antidormi, M. R. (2015). Declining acidic deposition begins reversal of forest-soil acidification in the northeastern US and eastern Canada. Environmental Science & Technology, 49, 13103–13111.

    Article  CAS  Google Scholar 

  • Löfgren, S. (2001). The chemical effects of deicing salt on soil and stream water of five catchments in southeast Sweden. Water, Air, and Soil Pollution, 130(1-4), 863–868.

    Article  Google Scholar 

  • Mason, C. F., Norton, S. A., Fernandez, I. J., & Katz, L. E. (1999). Deconstruction of the chemical effects of road salt on stream water chemistry. Journal of Environmental Quality, 28, 82–91.

    Article  CAS  Google Scholar 

  • McBean, E., & Al-Nassri, J. (1987). Migration pattern of de-icing salts from roads. Journal of Environmental Management, 25, 231–238.

    Google Scholar 

  • McNamara, S. M., Kolesar, K. R., Wang, S., Kirpes, R. M., May, N. W., Gunsch, M. J., et al. (2020). Observation of road salt aerosol driving inland wintertime atmospheric chlorine chemistry. ACS Central Science.

  • Meriano, M., Eyles, N., & Howard, K. H. (2009). Hydrogeological impacts of road salt from Canada’s busiest highway on a Lake Ontario watershed (Frenchman’s Bay) and lagoon, City of Pickering. Journal of Contaminant Hydrology, 107, 66–81.

    Article  CAS  Google Scholar 

  • Moore, J., Lev, S. M., & Casey, R. E. (2013). Modeling the effects of road salt on soil, aquifer, and stream chemistry. In Proceedings of the conference MODFLOW: Translating science into practice, Colorado School of Mines, Golden, CO, USA.

    Google Scholar 

  • Moore, J., Bird, D. L., Dobbis, S. K., & Woodward, G. (2017). Nonpoint source contributions drive elevated major ion and dissolved inorganic carbon concentrations in urban watersheds. Environmental Science & Technology Letters, 4(6), 198–204.

    Article  CAS  Google Scholar 

  • NADP. (2018). National Atmospheric Deposition Program. NADP Program Office, Illinois State Water Survey, University of Illinois, Champaign, IL 61820.

  • Neher, D. A., Asmussen, D., & Lovell, S. (2013). Roads in northern hardwood forests affect adjacent plant communities and soil chemistry in proportion to the maintained roadside area. Science of the Total Environment, 449, 320–327.

    Article  CAS  Google Scholar 

  • Norrström, A. C., & Bergstedt, E. (2001). The impact of road deicing salts (NaCl) on colloid dispersion and base cation pools in roadside soils. Water Air Soil Pollution, 127, 281–299.

    Article  Google Scholar 

  • NYSAPA (New York State Adirondack Park Agency). (2020). More about the Adirondack Park. http://www.apa.state.ny.us. Accessed 19 June 2020.

  • NYSOGS. 2013. New York State Office of General Services. Road salt, treated salt, and emergency salt. Historical Details. Corning Tower, Empire State Plaza, Albany, NY 12242.

  • Oliva, P., Viers, J., & Dupré, B. (2003). Chemical weathering in granitic environments. Chemical Geology, 202, 225–256.

    Article  CAS  Google Scholar 

  • Ouimet, R., & Duchesne, L. (2005). Base cation mineral weathering and total release rates from soils in three calibrated forest watersheds on the Canadian Boreal Shield. Canadian Journal of Soil Science, 85, 245–260.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (2013). Description of input and examples for PHREEQC version 3: A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations (No. 6-A43). US Geological Survey.

  • Price, J. R., & Szymanski, D. W. (2013). The effects of road salt on stream water chemistry in two small forested watersheds Catoctin Mountain Maryland USA. Aquatic Geochemistry, 20, 243–265.

    Article  Google Scholar 

  • Regalado, S. A., & Kelting, D. L. (2015). Landscape level estimate of lands and waters impacted by road runoff in the Adirondack Park of New York State. Environmental Monitoring and Assessment, 187, 510.

    Article  Google Scholar 

  • Rosfjord, C. H., Webster, K. E., Kahl, J. S., Norton, S. A., Fernandez, I. J., & Herlihy, A. T. (2007). Anthropogenically driven changes in chloride complicate interpretation of base cation trends in lakes recovering from acid deposition. Environmental Science and Technology, 41, 7688–7693.

    Article  CAS  Google Scholar 

  • Schweiger, A. H., Audorff, V., & Beierkuhnlein, C. (2015). Salt in the wound: The interfering effect of road salt on acidified forest catchments. Science of the Total Environment, 532, 595–604.

    Article  CAS  Google Scholar 

  • Shanley, J. B. (1994). Effects of ion exchange on stream solute fluxes in a basin receiving highway deicing salts. Journal of Environmental Quality, 23, 977–986.

    Article  CAS  Google Scholar 

  • Sullivan, T. J., Fernandez, I. J., Herlihy, A. T., Driscoll, C. T., McDonnell, T. C., Nowicki, N. A., Snyder, K. U., & Sutherland, J. W. (2006). Acid-base characteristics of soils in the Adirondack Mountains, New York. Soil Science Society of America Journal, 70, 141–152.

    Article  CAS  Google Scholar 

  • Sullivan, T. J., Cosby, B. J., Herlihy, A. T., Driscoll, C. T., Fernandez, I. J., McDonnell, T. C., Boylen, C. W., Nierzwicki-Bauer, S. A., & Snyder, K. U. (2007). Assessment of the extent to which intensively-studied lakes are representative of the Adirondack region and response to future changes in acidic deposition. Water, Air, and Soil Pollution, 185, 279–291.

    Article  CAS  Google Scholar 

  • Sun, H., Huffine, M., Husch, J., & Sinpatanasajul, L. (2012). Na/Cl molar ratio changes during a salting cycle and its application to the estimation of sodium retention in salted watersheds. Journal of Contaminant Hydrology, 137, 96–105.

    Article  Google Scholar 

  • Sutherland, J. W., Norton, S. A., Short, J. W., & Navitsky, C. (2018). Modeling salinization and recovery of road salt-impacted lakes in temperate regions based on long-term monitoring of Lake George, New York (USA) and its drainage basin. Science of the Total Environment, 637, 282–294.

    Article  Google Scholar 

  • Watmough, S. A., Aherne, J., Alewell, C., Arp, P., Bailey, S., Clair, T., Dillon, P., Duchesne, L., Eimers, C., Fernandez, I., Foster, N., Larssen, T., Miller, E., Mitchell, M., & Page, S. (2005). Sulphate, nitrogen, and base cation budgets at 21 forested catchments in Canada, the United States, and Europe. Environmental Monitoring and Assessment, 109, 1–36.

    Article  CAS  Google Scholar 

  • Willmert, H. M., Osso Jr., J. D., Twiss, M. R., & Langen, T. A. (2018). Winter road management effects on roadside soil and vegetation along a mountain pass in the Adirondack Park, New York, USA. Journal of environmental management, 225, 215–223.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Adirondack Lakes Survey Corporation for the use of the ALTM dataset and to Adirondack Lakes Assessment Program participants and our partner, Protect the Adirondacks. AWI laboratory instruments were purchased with funds from the National Science Foundation (award number 0722927).

Availability of Data and Material

The ALTM dataset is available for direct download at http://www.adirondacklakessurvey.org/ and the AWI dataset is available on request by contacting the corresponding author.

Code Availability

Not applicable

Funding

This work was primarily supported with internal funds and partially supported by NSF grant MRE 0722927

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Kelting.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable

Consent for Publication

Not applicable

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelting, D.L., Laxson, C.L. Road Salting Induces Regional-Scale Losses of Base Cations from Forested Watersheds. Water Air Soil Pollut 232, 207 (2021). https://doi.org/10.1007/s11270-021-05143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05143-x

Keywords

Navigation