Skip to main content
Log in

Survival Strategies in Khavi Grass [Cymbopogon jwarancusa (Jones) Schult.] Colonizing Hot Hypersaline and Arid Environments

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Deserts are generally prone to a number of ecological hazards which act as agents for the development of particularly a very diverse group of grasses, which can resist to salt stress through multiple morpho-anatomical and physio-biochemical mechanisms. Of such grasses, Cymbopogon jwarancusa is found inhabiting different saline patches of the Cholistan desert, so its different populations were selected from five saline habitats [least saline Derawar Fort (DF); moderately saline Trawaywala Toba (TW) and Bailahwala Dahar (BD), and high saline Ladam Sir (LS) and Pati Sir (PS)] and tested for their salt tolerance mechanism. Differentially adapted populations of this grass showed specific modifications in terms of anatomical features, mainly increased sclerification in both external hypodermis and internal endodermis, cortical layers, and increased size of xylem vessels with increase in salinity of the habitat. Increased endodermal thickness may control radial movement of water in roots. The reduction in leaf area is found to be the principal strategy that makes C. jwarancusa promising to attenuate the effects of the reduced availability of water under saline stress. Thick epidermis with dense cuticle and large bulliform cells area can be particularly considered as an important adaptation of this grass against physiological drought. Moreover, increased density of trichomes is found critical for checking undue water loss through the leaf surface and increase in these tissues at high salinity level may indicate that this species has better adapted to saline habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdellaoui, R., Boughalleb, F., Chebil, Z., Mahmoudi, M., & Belgacem, A. O. (2017). Physiological, anatomical and antioxidant responses to salinity in the Mediterranean pastoral grass plant Stipa lagascae. Crop & Pasture Science, 68(9), 872–884.

    Article  CAS  Google Scholar 

  • Abdullah, M., Rafay, M., Sial, N., Rasheed, F., Nawaz, M. F., Nouman, W., & Khalil, S. (2017). Determination of forage productivity, carrying capacity and palatability of browse vegetation in arid rangelands of Cholistan Desert (Pakistan). Applied Ecology and Environmental Research, 15(4), 623–637.

    Article  Google Scholar 

  • Abobatta, W. F. (2020). Plant Responses and Tolerance to Extreme Salinity: Learning from Halophyte Tolerance to Extreme Salinity. In Salt and Drought Stress Tolerance in Plants (pp. 177-210). Springer, Cham.

  • Agarwal, P., Dabi, M., Kinhekar, K., Gangapur, D. R., & Agarwal, P. K. (2020). Special Adaptive Features of Plant Species in Response to Salinity. In Salt and Drought Stress Tolerance in Plants (pp. 53-76). Springer, Cham.

  • Ahmad, K. S., Hameed, M., Deng, J., Ashraf, M., Hamid, A., Ahmad, F., & Akhtar, N. (2016). Ecotypic adaptations in Bermuda grass (Cynodon dactylon) for altitudinal stress tolerance. Biologia, 71(8), 885–895.

    Article  CAS  Google Scholar 

  • Ahmed, N., Mahmood, A., Tahir, S. S., Bano, A., Malik, R. N., Hassan, S., & Ashraf, A. (2014). Ethnomedicinal knowledge and relative importance of indigenous medicinal plants of Cholistan desert, Punjab Province, Pakistan. Journal of Ethnopharmacology, 155(2), 1263–1275.

    Article  Google Scholar 

  • Akbari, M., Mahna, N., Ramesh, K., Bandehagh, A., & Mazzuca, S. (2018). Ion homeostasis, osmoregulation, and physiological changes in the roots and leaves of pistachio root stocks in response to salinity. Protoplasma, 255(5), 1349–1362.

    Article  CAS  Google Scholar 

  • Akcin, T. A., Akcin, A., & Yalcın, E. (2017). Anatomical changes induced by salinity stress in Salicornia freitagii (Amaranthaceae). Brazilian Journal of Botany, 40(4), 1013–1018.

    Article  Google Scholar 

  • Almeida, D. M., Oliveira, M. M., & Saibo, N. J. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40(1), 326–345.

    Article  CAS  Google Scholar 

  • Al-Tawaha, A. R., Turk, M. A., Abu-Zaitoon, Y. M., Aladaileh, S. H., Al-Rawashdeh, I. M., Alnaimat, S., & Wedyan, M. (2017). Plants adaptation to drought environment. Bulgarian Journal of Agricultural Science, 23(3), 381–388.

    Google Scholar 

  • Azuma, W., Ishii, H. R., Kuroda, K., & Kuroda, K. (2016). Function and structure of leaves contributing to increasing water storage with height in the tallest Cryptomeria japonica trees of Japan. Trees, 30(1), 141–152.

    Article  Google Scholar 

  • Barzegargolchini, B., Movafeghi, A., Dehestani, A., & Mehrabanjoubani, P. (2017). Increased cell wall thickness of endodermis and protoxylem in Aeluropus littoralis roots under salinity: the role of LAC4 and PER64 genes. Journal of Plant Physiology, 218, 127–134.

    Article  CAS  Google Scholar 

  • Cabrita, M. T., Duarte, B., Cesário, R., Mendes, R., Hintelmann, H., Eckey, K., & Canário, J. (2019). Mercury mobility and effects in the salt-marsh plant Halimione portulacoides: Uptake, transport, and toxicity and tolerance mechanisms. Science of the Total Environment, 650(1), 111–120.

    Article  CAS  Google Scholar 

  • Dolatabadian, A., Sanavy, S. A. M. M., & Ghanati, F. (2011). Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Notulae Scientia Biologicae, 3(1), 41–45.

    Article  Google Scholar 

  • Drake, P. L., De Boer, H. J., Schymanski, S. J., & Veneklaas, E. J. (2019). Two sides to every leaf: water and CO 2 transport in hypostomatous and amphistomatous leaves. New Phytologist, 222(3), 1179–1187.

    Article  CAS  Google Scholar 

  • Erel, R., Le, T., Eshel, A., Cohen, S., Offenbach, R., Strijker, T., & Shtein, I. (2020). Root development of bell pepper (Capsicum annuum L.) as affected by water salinity and sink strength. Plants, 9(1), 35–47.

    Article  CAS  Google Scholar 

  • Fatima, S., Hameed, M., Ahmad, F., Ashraf, M., & Ahmad, R. (2018). Structural and functional modifications in a typical arid zone species Aristida adscensionis L. along altitudinal gradient. Flora, 249, 172–182.

    Article  Google Scholar 

  • Grigore, M. N., & Toma, C. (2017). Bulliform cells. In Anatomical Adaptations of Halophytes (pp. 325-338). Springer, Cham.

  • Hameed, M., Ashraf, M., Al-Quriany, F., Nawaz, T., Ahmad, M. S. A., Younis, A., & Naz, N. (2011). Medicinal flora of the Cholistan desert: a review. Pakistan Journal of Botany, 43(2), 39–50.

    Google Scholar 

  • Hasanuzzaman, M., Davies, N. W., Shabala, L., Zhou, M., Brodribb, T. J., & Shabala, S. (2017). Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley. BMC Plant Biology, 17(1), 107–119.

    Article  Google Scholar 

  • Huang, G., Li, C. H., & Li, Y. (2018). Phenological responses to nitrogen and water addition are linked to plant growth patterns in a desert herbaceous community. Ecology and Evolution, 8(10), 5139–5152.

    Article  Google Scholar 

  • Kadioglu, A., & Terzi, R. (2007). A dehydration avoidance mechanism: leaf rolling. The Botanical Review, 73(4), 290–302.

    Article  Google Scholar 

  • Khan, N., Bano, A., & Babar, M. A. (2017). The root growth of wheat plants, the water conservation and fertility status of sandy soils influenced by plant growth promoting rhizobacteria. Symbiosis, 72(3), 195–205.

    Article  CAS  Google Scholar 

  • Liang, W., Ma, X., Wan, P., & Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495(1), 286–291.

    Article  CAS  Google Scholar 

  • Mansoor, U., Fatima, S., Hameed, M., Naseer, M., Ahmad, M. S. A., Ashraf, M., & Waseem, M. (2019). Structural modifications for drought tolerance in stem and leaves of Cenchrus ciliaris L. ecotypes from the Cholistan Desert. Flora, 261, 151485.

    Article  Google Scholar 

  • McSorley, K. A., Rutter, A., Cumming, R., & Zeeb, B. A. (2016). Chloride accumulation vs chloride excretion: Phytoextraction potential of three halophytic grass species growing in a salinized landfill. Science of the Total Environment, 572, 1132–1137.

    Article  CAS  Google Scholar 

  • Monteverdi, C. M., Lauteri, M., & Valentini, R. (2008). Biodiversity of plant species and adaptation to drought and salt conditions. Selection of species for sustainable reforestation activity to combat desertification. In Biosaline agriculture and high salinity tolerance (pp. 197-206). Birkhäuser Basel.

  • Naseer, M., Hameed, M., Zahoor, A., Ahmad, F., Fatima, S., Ahmad, M. S. A., & Iftikhar, M. (2017). Photosynthetic response in buttonwood (Conocarpus erectus L.) to salt stress. Pakistan Journal of Botany, 49, 847–856.

    CAS  Google Scholar 

  • Naz, N., Hameed, M., Ashraf, M., Arshad, M., & Ahmad, M. S. A. (2010). Impact of salinity on species association and phytosociology of halophytic plant communities in the Cholistan desert, Pakistan. Pakistan Journal of Botany, 42, 2359–2367.

    Google Scholar 

  • Naz, N., Hameed, M., Nawaz, T., Batool, R., Ashraf, M., Ahmad, F., & Ruby, T. (2013). Structural adaptations in the desert halophyte Aeluropus lagopoides (Linn.) Trin. ex Thw. under high salinity. Journal of Biological Research, 19, 150–164.

    Google Scholar 

  • Peel, J. R., Mandujano Sánchez, M. C., López Portillo, J., & Golubov, J. (2017). Stomatal density, leaf area and plant size variation of Rhizophora mangle (Malpighiales: Rhizophoraceae) along a salinity gradient in the Mexican Caribbean. Revista de Biología Tropical, 65(2), 701–712.

    Article  Google Scholar 

  • Perlikowski, D., Augustyniak, A., Masajada, K., Skirycz, A., Soja, A. M., Michaelis, Ä., & Kosmala, A. (2019). Structural and metabolic alterations in root systems under limited water conditions in forage grasses of Lolium-Festuca complex. Plant Science, 283, 211–223.

    Article  CAS  Google Scholar 

  • Rafay, M., Abdullah, M., Hussain, T., Ruby, T., & Qureshi, R. (2016). Grass productivity and carrying capacity of the Cholistan desert rangelands. Pakistan Journal of Botany, 48(6), 2385–2390.

    Google Scholar 

  • Rahneshan, Z., Nasibi, F., & Moghadam, A. A. (2018). Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. Journal of Plant Interactions, 13(1), 73–82.

    Article  CAS  Google Scholar 

  • Segado, P., Domínguez, E., & Heredia, A. (2016). Ultrastructure of the epidermal cell wall and cuticle of tomato fruit (Solanum lycopersicum L.) during development. Plant Physiology, 170(2), 935–946.

    Article  CAS  Google Scholar 

  • Shahid, M. A., Sarkhosh, A., Khan, N., Balal, R. M., Ali, S., Rossi, L., & Garcia-Sanchez, F. (2020). Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy, 10(7). https://doi.org/10.3390/agronomy10070938.

  • Sharma, S. S., Dietz, K. J., & Mimura, T. (2016). Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell & Environment, 39(5), 1112–1126.

    Article  CAS  Google Scholar 

  • Simões, W. L., Calgaro, M., Coelho, D. S., Santos, D. B. D., & Souza, M. A. D. (2016). Growth of sugar cane varieties under salinity. Revista Ceres, 63(2), 265–271.

    Article  Google Scholar 

  • Stavridou, E., Hastings, A., Webster, R. J., & Robson, P. R. (2017). The impact of soil salinity on the yield, composition and physiology of the bioenergy grass Miscanthus× giganteus. GCB Bioenergy, 9(1), 92–104.

    Article  CAS  Google Scholar 

  • Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P., & McDonald, G. K. (2011). Additive effects of Na+ and Cl–ions on barley growth under salinity stress. Journal of Experimental Botany, 62(6), 2189–2203.

    Article  CAS  Google Scholar 

  • Urban, J., Ingwers, M., McGuire, M. A., & Teskey, R. O. (2017). Stomatal conductance increases with rising temperature. Plant Signaling & Behavior, 12(8), e1356534.

    Article  Google Scholar 

  • Vanhees, D. J., Loades, K. W., Bengough, A. G., Mooney, S., & Lynch, J. P. (2020). Root anatomical traits contribute to deeper rooting of maize under compacted field conditions. Journal of Experimental Botany, 71(14), 4243–4257.

    Article  Google Scholar 

  • Wasim, M. A., & Naz, N. (2020). Anatomical adaptations of tolerance to salt stress in Cenchrus ciliaris L., a saline desert grass. Journal of Animal and Plant Sciences, 30(6), 1548–1566.

    Google Scholar 

  • Weber, D.J. 2009. Adaptive mechanisms of halophytes in desert regions. In: Salinity and water stress. (Eds.): M. Ashraf, M. Ozturk and H.R. Athar. Springer-Verlag, pp: 179-186.

  • Wiszniewska, A., Koźmińska, A., Hanus-Fajerska, E., Dziurka, M., & Dziurka, K. (2019). Insight into mechanisms of multiple stresses tolerance in a halophyte Aster tripolium subjected to salinity and heavy metal stress. Ecotoxicology and Environmental Safety, 180, 12–22.

    Article  CAS  Google Scholar 

  • Wyka, T. P., Bagniewska-Zadworna, A., Kuczyńska, A., Mikołajczak, K., Ogrodowicz, P., Żytkowiak, M., & Adamski, T. (2019). Drought-induced anatomical modifications of barley (Hordeum vulgare L.) leaves: An allometric perspective. Environmental and Experimental Botany, 166, 103798.

    Article  Google Scholar 

  • Xue, W., & Li, X. (2017). Moderate shade environment facilitates establishment of desert phreatophytic species Alhagi sparsifolia seedlings by enlarge fine root biomass. Acta Physiologiae Plantarum, 39(1), 7–19.

    Article  Google Scholar 

  • Yu, X., Shi, P., Hui, C., Miao, L., Liu, C., Zhang, Q., & Feng, C. (2019). Effects of salt stress on the leaf shape and scaling of Pyrus betulifolia Bunge. Symmetry, 11(8), 991–1005.

    Article  CAS  Google Scholar 

  • Zhao, W., Liu, B., Chang, X., Yang, Q., Yang, Y., Liu, Z., & Eamus, D. (2016). Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A special case of a desert ecosystem in China. Journal of Hydrology, 538, 374–386.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Hameed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatima, S., Hameed, M., Naz, N. et al. Survival Strategies in Khavi Grass [Cymbopogon jwarancusa (Jones) Schult.] Colonizing Hot Hypersaline and Arid Environments. Water Air Soil Pollut 232, 82 (2021). https://doi.org/10.1007/s11270-021-05050-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05050-1

Keywords

Navigation