Skip to main content
Log in

Optimization of Ni (II) Facilitated Transport from Aqueous Solutions Using a Polymer Inclusion Membrane.

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Efficient Ni (II) transport through a polymer inclusion membrane (PIM) was achieved. A central composite design (DCC) coupled to a Derringer’s desirability function (DF) was used to optimize membrane composition using Kelex 100 (HQ) as carrier, cellulose triacetate (CTA) as polymer support, and tris(2-ethylhexyl) phosphate (TEHP) as plasticizer. The effect of components’ contents in the membrane and the interactions among them on Ni (II) migration was evaluated using two normalized function as response variables (GFeed, GStrip). Using the optimal membrane composition, (96 ± 1.5) % of Ni (II) was detected in the strip solution after 48 h of pertraction. The efficiency factors of the system were determined, i.e., permeability (optimization pH of the aqueous samples and initial metal concentration), selectivity (among Zn (II), Pb (II), Cu (II), Ca (II) and Mg (II)), and stability (reuse capability). Ni (II) transport mechanism was proposed and analyzed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acheampong, M. A., Pereira, J. P. C., Meulepas, R. J. W., & Lens, P. N. L. (2012). Kinetics modelling of cu (II) biosorption on to coconut shell and Moringa oleifera seeds from tropical regions. Environmental Technology, 33, 409–417. https://doi.org/10.1080/09593330.2011.576705.

    Article  CAS  Google Scholar 

  • Aguilar J C, Sánchez Castellanos M, Rodríguez de San Miguel E & de Gyves J (2001). Cd (II) and Pb (II) extraction and transport modeling in SLM and PIM systems using Kelex 100 as carrier. Journal of Membrane Science, 190: 107–118.

  • Almeida, M. I. G. S., Chan, C., Pettigrove, J. V., Cattrall, W. R., & Kolev, S. D. (2014). Development of passive sampler for zinc (II) in urban pond waters using a polymer inclusion membrane. Environmental Pollution, 193, 233–239. https://doi.org/10.1016/j.envpol.2014.06.040.

    Article  CAS  Google Scholar 

  • Chaudhry, H. S., & Nath, K. (1985). Nickel induced hyperglycemia in the freshwater fish. Water, Air and Soil Pollution., 24, 173–176. https://doi.org/10.1007/BF00285442.

    Article  CAS  Google Scholar 

  • Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38, 11–41. https://doi.org/10.1016/j.seppur.2003.10.006.

    Article  CAS  Google Scholar 

  • Das K K, Das S N & Dhundasi S A (2008). Nickel, its adverse health effects & oxidative stress. The Indian, Journal of Medical Research, 128 (4): 412.

  • Gardner, S. J., Walker, O. J., & Lamb, J. D. (2004). Permeability and durability effects of cellulose polymer variation in polymer inclusion membranes. Journal of Membrane Science, 229(1–2), 87–93. https://doi.org/10.1016/j.memsci.2003.09.017.

    Article  CAS  Google Scholar 

  • Gautam, K. R., Sharma, K. S., Suresh, M., & Mahesh, C. C. (2014). CHAPTER 1: Contamination of heavy metals in aquatic media: Transport, toxicity and Technologies for Remediation. Heavy Metals In Water: Presence, Removal and Safety, 1, 1–24. https://doi.org/10.1039/9781782620174-00001.

    Article  Google Scholar 

  • Keränen, A., Leiviskä, T., Salakka, A., & Tanskanen, J. (2015). Removal of nickel and vanadium from ammoniacal industrial wastewater by ion exchange and adsorption on activated carbon. Desalination and Water Treatment, 53, 2645–2654. https://doi.org/10.1080/19443994.2013.868832.

    Article  CAS  Google Scholar 

  • Kobya, M., Demirbas, E., Parlak, N. U., & Yigit, S. (2010). Treatment of cadmium and nickel electroplating rinse water by electrocoagulation. Environmental Technology, 31(13), 1471–1481. https://doi.org/10.1080/09593331003713693.

    Article  CAS  Google Scholar 

  • Lamb, J. D., & Nazarenko, Y. A. (1997). Selective metal ion sorption and transport using polymer inclusion membranes containing dycyclorohexano-18-crown-6. Separation Science and Technology, 32, 2749–2764. https://doi.org/10.1080/01496399708002220.

    Article  CAS  Google Scholar 

  • Li, T., Xiao, K., Yang, B., Peng, G., Liu, F., Tao, L., Chen, S., Wei, H., Yu, G., & Deng, S. (2019). Recovery of Ni (II) from real electroplating wastewater using fixed-bed resin adsorption and subsequent electrodeposition. Frontier of Environmental Science and Engineering, 13(6), 91. https://doi.org/10.1007/s11783-019-1175-7.

    Article  CAS  Google Scholar 

  • Machado, M. D., & Soares, H. M. V. M. (2010). Removal of chromium, copper, and nickel from an electroplating effluent using a flocculent Brewer’s yeast strain of Saccharomyces cerevisiae. Water, Air and Soil Pollution., 212, 199–204. https://doi.org/10.1007/s11270-010-0332-10.

    Article  CAS  Google Scholar 

  • Masalovich, M. S., Ardasheva, L. P., & Shagisultanova, G. A. (2006). Nickel (II) complex with 8-Hydroxyquinoline as a new structural unit for electrochemical synthesis of photo-and Electroactive polymers. Russian Journal of Inorganic Chemistry, 51(9), 1591–1596. https://doi.org/10.1134/S0036023606090142.

    Article  CAS  Google Scholar 

  • Mavros P, Zouboulis A I & Lazaridis N K (1993). Removal of metal ions from wastewaters. The case of nickel. Environmental Technology, 14:83:91. DOI: https://doi.org/10.1080/095933393093852666.

  • Meng, X., Wang, C., Zhow, P., Xin, X., & Wang, L. (2017). Transport and selectivity of indium through polymer inclusion membrane in hydrochloric acid medium. Frontier of Environmental Science and Engineering, 11(6), 1–10. https://doi.org/10.1007/s11783-017-0950-6.

    Article  CAS  Google Scholar 

  • Mokhter, M. A., Lakard, S., Magnenet, C., Euvrard, M., & Lakard, B. (2016). Preparation of polyelectrolyte-modified membranes for heavy metal ions removal. Environmental Technology., 38(19), 2476–2485. https://doi.org/10.1080/09593330.2016.1267265.

    Article  CAS  Google Scholar 

  • Nghiem, L. D., Mornane, P., Potter, I. D., Perera, J. M., Cattrall, W. R., & Kolev, S. D. (2006). Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). Journal of Membrane Science, 281, 7–41. https://doi.org/10.1016/j.memsci.2006.0.3.035.

    Article  CAS  Google Scholar 

  • Pośpiech, B., & Walkowiak, W. (2015). Separation of cadmium(ii), cobalt(ii) and nickel(ii) by transport through polymer inclusion membranes with phosphonium ionic liquid as ion carrier. Separation and Purification Technology, 57, 461–465.

    Article  Google Scholar 

  • Pośpiech, B., & Walkowiak, W. (2007). Separation of copper (II), cobalt (II) and nickel (II) from chloride solutions by polymer inclusion membranes. Separation and Purification Technology, 57, 61–465.

    Article  Google Scholar 

  • Radzyminska-Lenarcik, E., & Ulewicz, M. (2015). The use of the steric effect of the carrier molecule in the polymer inclusion membranes for the separation of cobalt (II), nickel (II), copper (II), and zinc (II) ions. Polish Journal of Chemical Technology, 17(2), 51–56.

    Article  CAS  Google Scholar 

  • Radzyminska-Lenarcik, E., & Ulewicz, M. (2019). Polymer inclusion membranes (PIMs) doped with Alkylimidazole and their application in the separation of non-ferrous metal ions. Polymers, 11, 1780. https://doi.org/10.3390/polym11111780.

    Article  CAS  Google Scholar 

  • Raval, P. N., Prapti, U. S., & Nisha, K. S. (2016). Adsorptive removal of nickel (II) ions from aqueous environment: A review. Journal of Environmental Management, 179, 1–20. https://doi.org/10.1016/j.jenvman.2016.04045.

    Article  CAS  Google Scholar 

  • Ritcey, G. M., & Ashbrookk, A. W. (1984). Solvent extraction. Principles and applications to process metallurgy Part I: Elsevier.

    Google Scholar 

  • Rodríguez de San Miguel E, Hernández-Andaluz A Ma, Bañuelos J G, Saniger J M., Aguilar J C, de Gyves J (2006). LIX-loaded polymer inclusion membrane for copper (II) transport 1. Composition-performance relationships through membrane characterization and solubility diagrams. Material Science and Engineering A. 434: 30–38. https://doi.org/10.1016/j.msea.2006.07.029.

  • Rodríguez de San Miguel E, Vital X & de Gyves J (2014). Cr (VI) transport via a supported ionic liquid membrane containing CYPHOS IL101 as carrier: System analysis and optimization through experimental design strategies. Journal of Hazardous Materials. 273: 253–262. https://doi.org/10.1016/j.jhazmat.2014.03.052.

  • Rodríguez de San Miguel E, Aguilar J C & de Gyves J. (2008). Structural effects on metal ion migration across polymer inclusion membranes: Dependence of transport profiles on nature of active plasticizer. Journal of Membrane Science, 307(1), 105–116. https://doi.org/10.1016/j.memsci.2007.09.012.

    Article  CAS  Google Scholar 

  • Rodríguez de San Miguel E, Monrroy- Barreto M, Aguilar J C, Ocampo A l & de Gyves J (2011). Structural effects on metal ion migration across polymer inclusion membranes: Dependence of membrane properties and transport profiles on the weight and volume fractions of the components. Journal of Membrane Science, 379: 416–425. DOI: https://doi.org/10.1016/j.memsci.2011.06.013.

  • Rojas-Challa Y, Rodríguez de San Miguel E & de Gyves J. (2020). Response Surface Methodology Approach Applied to the Study of Arsenic (V) Migration by Facilitated Transport in Polymer Inclusion Membranes. Water, Air and Soil Pollution, 231(33). https://doi.org/10.1007/s11270-019-4347-y

  • Sadiq, M., & Zaidi, T. H. (1981). The adsorption characteristics of soils and removal of cadmium and nickel from wastewaters. Water, Air and Soil Pollution., 16, 293–299. https://doi.org/10.1007/BF01046910.

    Article  CAS  Google Scholar 

  • Sathyavathi, S. A., Manjula, J., Rajendharan, P., & Gunasekaran, P. (2014). Extracellular synthesis and characterization of nickel oxide nanoparticles from microbacterium sp. MRS-1 towards bioremediation of nickel electroplating industrial effluent. Bioresource Technology, 165, 270–273. https://doi.org/10.1016/j.biortech.2014.03.031.

    Article  CAS  Google Scholar 

  • Madaeni, S. S., & Heidary, F. (2012). Effect of surface modification of microfiltration membrane on capture of toxic heavy metal ions. Environmental Technology, 33(4), 393–399. https://doi.org/10.1080/09593330.2011.576703.

    Article  CAS  Google Scholar 

  • Shaidan, N. H., Eldemerdash, U., & Awad, S. (2012). Removal of Ni (II) ions from aqueous solutions using fixed-bed ion exchange column technique. Journal of Taiwan Institute of Chemical Engineers, 43, 40–45. https://doi.org/10.1016/j.jtice.2011.06.006.

    Article  CAS  Google Scholar 

  • Spínola Costa, A. C., Lopes, L., Korn, M., & Portela, J. G. (2002). Separation and pre-concentration of cadmium, copper, Lead, nickel and zinc by solid-liquid extraction of their Cocrystallized naphthalene Dithizone chelate in saline matrices. Journal of the Brazilian Chemical Society, 13(5), 674–678.

    Article  Google Scholar 

  • Stary, J., & Freiser, H. (1978). Chelating Extractants: 8-Hydroxyquinolines. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Ulewicz, M., & Radzyminska-Lenarcik, E. (2010). Transport of metal ions across polymer inclusion membrane with 1-alkylimidazole. Physicochemical Problems of Mineral Processing, 46, 119–130.

    Google Scholar 

  • Ulewicz, M., & Walkowiak, W. (2005). Selective removal of transition metal ions in transport through polymer inclusion membranes with organophosphorus acids. Environment Protection Engineering, 31(3–4), 73–81.

    CAS  Google Scholar 

  • United States Environmental Protection Agency (EPA) (2020). National Recommended Water Quality Criteria-Aquatic Life Criteria Table. Available online at https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table (Accessed May 15, 2020).

  • Vázquez, M. I., Romero, V., Fontàs, C., Anticó, E., & Benavente, J. (2014). Polymer inclusion membranes (PIMs) with the ionic liquid (IL) Aliquat 336 as extractant: Effect of base polymer and IL concentration on their physical–chemical and elastic characteristics. Journal of Membrane Science, 455, 312–319. https://doi.org/10.1016/j.memsci.2013.12.072.

    Article  CAS  Google Scholar 

  • Vellaichamy, S., & Palanivelu, K. (2011). Preconcentration and separation of copper, nickel and zinc in aqueous samples by flame atomic absorption spectrometry after column solid-phase extraction onto MWCNTs impregnated with D2EHPA-TOPO mixture. Journal of Hazardous Materials, 185, 1131–1139. https://doi.org/10.1016/j.jhazmat.2010.10.023.

    Article  CAS  Google Scholar 

  • Yildiz, Y., Manzak, A., Aydin, B., & Tutkun, O. (2014). Preparation and application of polymer inclusion membranes including Alamine 336 for the extraction of metals from an aqueous solution. Materials Technology, 48(5), 791–796.

    Google Scholar 

Download references

Acknowledgments

Financial support from DGAPA-UNAM (project PAPIIT IN229219) is highly appreciated. Q. Nadia Marcela Munguía Acevedo and Q.F.B. María Guadalupe Espejel Maya are thanked for their help in technical services. M. Macías acknowledges the CONACYT scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Rodríguez de San Miguel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macías, M., Rodríguez de San Miguel, E. Optimization of Ni (II) Facilitated Transport from Aqueous Solutions Using a Polymer Inclusion Membrane.. Water Air Soil Pollut 232, 62 (2021). https://doi.org/10.1007/s11270-021-04998-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-04998-4

Keywords

Navigation