Skip to main content

Advertisement

Log in

Towards a rational design of materials for the removal of environmentally relevant cations: polymer inclusion membranes (PIMs) and surface-modified PIMs for Sn2+ sequestration in aqueous solution

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This work is focused on the design and preparation of polymer inclusion membranes (PIMs) for potential applications for stannous cation sequestration from water. For this purpose, the membranes have been synthesized employing two polymeric matrices, namely, polyvinylchloride (PVC) and cellulose triacetate (CTA), properly enriched with different plasticizers. The novelty here proposed relies on the modification of the cited PIMs by selected extractants expected to interact with the target cation in the membrane bulk or onto its surface, as well as in the evaluation of their performances in the sequestration of tin(II) in solution through chemometric tools. The composition of both the membrane and the solution for each trial was selected by means of a D-Optimal Experimental Design. The samples such prepared were characterized by means of TG-DTA, DSC, and static contact angles investigations; their mechanical properties were studied in terms of tensile strength and elastic modulus, whereas their morphology was checked by SEM. The sequestering ability of the PIMs toward stannous cation was studied by means of kinetic and isotherm experiments using DP-ASV. The presence of tin in the membranes after the sequestration tests was ascertained by μ-ED-XRF mapping on selected samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  • Almeida MIGS, Cattrall RW, Kolev SD (2017) Polymer inclusion membranes (PIMs) in chemical analysis—a review. Anal Chim Acta 987:1–14

    Article  CAS  Google Scholar 

  • Araucz K, Aurich A, Kołodyńska D (2020) Novel multifunctional ion exchangers for metal ions removal in the presence of citric acid. Chemosphere 251:126331

    Article  CAS  Google Scholar 

  • Baby R, Saifullah B, Hussein MZ (2019) Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Res Lett 14:341

    Article  CAS  Google Scholar 

  • Bretti C, Cardiano P, Cigala RM, De Stefano C, Irto A, Lando G, Sammartano S (2018) Exploring various ligand classes for the efficient sequestration of stannous cations in the environment. Sci Total Environ 643:704–714

    Article  CAS  Google Scholar 

  • Cardiano P, Lo Schiavo S, Piraino P (2010) Hydrorepellent properties of organic–inorganic hybrid materials. J Non-Cryst Solids 356:917–926

    Article  CAS  Google Scholar 

  • Cardiano P, Falcone G, Foti C, Giuffrè O, Napoli A (2013) Binding ability of glutathione towards alkyltin(IV) compounds in aqueous solution. J Inorg Biochem 129:84–93

    Article  CAS  Google Scholar 

  • Cardiano P, Foti C, Mineo PG, Galletta M, Risitano F, Lo Schiavo S (2016) Sequestration ability of task specific ionic liquids towards cations of environmental interest. J Mol Liq 223:174–181

    Article  CAS  Google Scholar 

  • Cardiano P, Foti C, Giuffrè O (2017a) Removal of di- and tri-alkyltin(IV) compounds by polyphosphonate ligand: a speciation perspective. J Mol Liq 240:128–137

    Article  CAS  Google Scholar 

  • Cardiano P, Gómez-Laserna O, Mineo PG, Furia E, Triolo C, Patanè S, Lo Schiavo S (2017b) Synthesis, CO2 sorption and capacitive properties of novel protic poly(ionic liquid)s. J Mol Liq 241:222–230

    Article  CAS  Google Scholar 

  • Casella G, Fiore T, Mohamed MMA, Nagy L, Pellerito C, Pellerito L, Sammartano S, Scopelliti M (2007) Equilibria involved in the diorganotin(IV) and triorganotin(IV) phosphomycin interaction in aqueous solution. Appl Organomet Chem 21:455–461

    Article  CAS  Google Scholar 

  • Cataldo S, De Stefano C, Gianguzza A, Pettignano A, Sammartano S (2013) Sequestration of alkyltin(IV) cations by complexation with amino-polycarboxylic chelating agents. J Mol Liq 187:74–82

    Article  CAS  Google Scholar 

  • Cataldo S, Chiodo V, Crea F, Maisano S, Milea D, Pettignano A (2018) Biochar from byproduct to high value added material—a new adsorbent for toxic metal ions removal from aqueous solutions. J Mol Liq 271:481–489

    Article  CAS  Google Scholar 

  • Cerrahoğlu E, Kayan A, Bingöl D (2018) Multivariate optimization for removal of some heavy metals using novel inorganic–organic hybrid and calcined materials. Sep Sci Technol 53:2563–2572

    Article  CAS  Google Scholar 

  • Cigala RM, Crea F, De Stefano C, Lando G, Milea D, Sammartano S (2012) The inorganic speciation of tin(II) in aqueous solution. Geochim Cosmochim Acta 87:1–20

    Article  CAS  Google Scholar 

  • Cole RF (2015) Trends in the analysis and monitoring of organotins in the aquatic environment. Trends Environ Anal 8:1–11

    Article  CAS  Google Scholar 

  • de Carvalho Oliveira R, Santelli RE (2010) Occurrence and chemical speciation analysis of organotin compounds in the environment: a review. Talanta 82:9–24

    Article  CAS  Google Scholar 

  • De Stefano C, Gianguzza A, Marrone F, Piazzese D (1997) Interaction of alkyltin(IV) compounds with ligands of interest in the speciation of natural fluids: complexes of (CH3)2Sn2+ with carboxylates. Appl Organomet Chem 11:683–691

    Article  Google Scholar 

  • De Stefano C, Foti C, Gianguzza A, Sammartano S (2000) Hydrolysis processes of organotin(IV) compounds in sea water. In: Gianguzza A, Pelizzetti E, Sammartano S (eds) Chemical processes in marine environments. Springer-Verlag, Berlin, pp 213–228

    Chapter  Google Scholar 

  • De Stefano C, Gianguzza A, Giuffrè O, Piazzese D, Orecchio S, Sammartano S (2004) Speciation of organotin compounds in NaCl aqueous solution: Interaction of mono-, di- and triorganotin(IV) cations with nucleotides 5' monophosphates. Appl Organomet Chem 18:653–661

    Article  CAS  Google Scholar 

  • Dubalska K, Rutkowska M, Bajger-Nowak G, Konieczka P, Namieśnik J (2013) Organotin compounds: environmental fate and analytics. Crit Rev Anal Chem 43:35–54

    Article  CAS  Google Scholar 

  • Dutta K, De S (2017) Smart responsive materials for water purification: an overview. J Mater Chem A 5:22095–22112

    Article  CAS  Google Scholar 

  • Elias G, Díez S, Fontàs C (2019) System for mercury preconcentration in natural waters based on a polymer inclusion membrane incorporating an ionic liquid. J Hazard Mater 371:316–322

    Article  CAS  Google Scholar 

  • El-Kurd HM, El-Nahhal IM, El-Ashgar NM (2005) Synthesis of new polysiloxane-immobilized ligand system di(amidomethyl)aminetetraacetic acid. Phosphorus Sulfur 180:1657–1671

    Article  CAS  Google Scholar 

  • Foti C, Gianguzza A, Milea D, Millero FJ, Sammartano S (2004) Speciation of trialkyltin(IV) cations in natural fluids. Mar Chem 85:157–167

    Article  CAS  Google Scholar 

  • Gautam RK, Mudhoo A, Lofrano G, Chattopadhyaya MC (2014) Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration. J Environ Chem Eng 2:239–259

    Article  CAS  Google Scholar 

  • Gherasim CV, Bourceanu G, Timpu D (2011) Experimental and modeling studies of lead(II) sorption onto a polyvinyl-chloride inclusion membrane. Chem Eng J 172:817–827

    Article  CAS  Google Scholar 

  • Gianguzza A, Giuffrè O, Piazzese D, Sammartano S (2012) Aqueous solution chemistry of alkyltin(IV) compounds for speciation studies in biological fluids and natural waters. Coord Chem Rev 256:222–239

    Article  CAS  Google Scholar 

  • Ho TD, Canestraro AJ, Anderson JL (2011) Ionic liquids in solid-phase microextraction: a review. Anal Chim Acta 695:18–43

    Article  CAS  Google Scholar 

  • Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Edit 45:3216–3251

    Article  CAS  Google Scholar 

  • International_Tin_Association 2017: tin industry review International Tin Association, St. Albans (UK)

  • Jal PK, Patel S, Mishra BK (2004) Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta 62:1005–1028

    Article  CAS  Google Scholar 

  • Jon C-S, Meng L-Y, Li D (2019) Recent review on carbon nanomaterials functionalized with ionic liquids in sample pretreatment application. TrAC Trends Anal Chem 120:115641

    Article  CAS  Google Scholar 

  • Kołodyńska D, Budnyak TM, Hubicki Z, Tertykh VA (2017) Sol–gel derived organic–inorganic hybrid ceramic materials for heavy metal removal. In: MAK (ed) Sol–gel based nanoceramic materials: preparation, properties and applications. Springer, Cham

    Google Scholar 

  • Kuddushi M, Patel NK, Gawali SL, Mata JP, Montes-Campos H, Varela LM, Hassan PA, Malek NI (2020) Thermo-switchable de novo ionogel as metal absorbing and curcumin loaded smart bandage material. J Mol Liq 306:112922

    Article  CAS  Google Scholar 

  • Kuswandi B, Nitti F, Almeida MIGS, Kolev SD (2020) Water monitoring using polymer inclusion membranes: a review. Environ Chem Lett 18:129–150

    Article  CAS  Google Scholar 

  • Laine RM, Babonneau F (1993) Preceramic polymer routes to silicon carbide. Chem Mater 5:260–279

    Article  CAS  Google Scholar 

  • Leardi R (2013) Experimental design. In: Marini F (ed) Chemometrics in food chemistry. Elsevier, Oxford, pp 9–53

    Chapter  Google Scholar 

  • Lu F, Astruc D (2018) Nanomaterials for removal of toxic elements from water. Coord Chem Rev 356:147–164

    Article  CAS  Google Scholar 

  • Mahmoud ME, Osman MM, Yakout AA, Abdelfattah AM (2018) Water and soil decontamination of toxic heavy metals using aminosilica-functionalized-ionic liquid nanocomposite. J Mol Liq 266:834–845

    Article  CAS  Google Scholar 

  • Mei M, Huang X, Chen L (2019) Recent development and applications of poly (ionic liquid)s in microextraction techniques. TrAC-Trend. Anal. Chem. 112:123–134

    Article  CAS  Google Scholar 

  • Mishra AK (2016) Smart materials for waste water applications. John Wiley & Sons

  • Nayak V, Jyothi MS, Balakrishna RG, Padaki M, Deon S (2017) Novel modified poly vinyl chloride blend membranes for removal of heavy metals from mixed ion feed sample. J Hazard Mater 331:289–299

    Article  CAS  Google Scholar 

  • Ngarisan NI, Ngah CWZCW, Ahmad M, Kuswandi B (2014) Optimization of polymer inclusion membranes (PIMs) preparation for immobilization of Chrome Azurol S for optical sensing of aluminum(III). Sensors Actuators B Chem 203:465–470

    Article  CAS  Google Scholar 

  • Nghiem LD, Mornane P, Potter ID, Perera JM, Cattrall RW, Kolev SD (2006) Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). J Membr Sci 281:7–41

    Article  CAS  Google Scholar 

  • Okesola BO, Smith DK (2016) Applying low-molecular weight supramolecular gelators in an environmental setting—self-assembled gels as smart materials for pollutant removal. Chem Soc Rev 45:4226–4251

    Article  CAS  Google Scholar 

  • Pellerito L, Nagy L (2002) Organotin(IV)n+ complexes formed with biologically active ligands: equilibrium and structural studies, and some biological aspects. Coord Chem Rev 224:111–150

    Article  CAS  Google Scholar 

  • Peterson J, MacDonell M, Haroun L, Monette F (2007) Tin. In: Hildebrand RD, Taboas A (eds) Human health fact sheet, August 2005. U.S. Department of Energy, pp 54–55

  • Rosace G, Guido E, Colleoni C, Brucale M, Piperopoulos E, Milone C, Plutino MR (2017) Halochromic resorufin-GPTMS hybrid sol–gel: chemical–physical properties and use as pH sensor fabric coating. Sensors Actuators B Chem 241:85–95

    Article  CAS  Google Scholar 

  • Samiey B, Cheng C-H, Wu J (2014) Organic–inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: a review. Materials 7:673–726

    Article  CAS  Google Scholar 

  • Schapira JP (1997) Le dossier des déschets nucléaires, Société Francaise de Physique

  • Scheiflinger F, Habibi M, Zeynolabedini E, Plessl C, Wallner G (2019) Radionuclide extraction with different ionic liquids. J Radioanal Nucl Chem 322:1841–1848

    Article  CAS  Google Scholar 

  • Sun J, He B, Yin Y, Li L, Jiang G (2010) Speciation of organotin compounds in environmental samples with semi-permanent coated capillaries by capillary electrophoresis coupled with inductively coupled plasma mass spectrometry. Anal Methods-UK 2:2025–2031

    Article  CAS  Google Scholar 

  • Suresh Kumar D, Susanginee N, Snehaprava D, Kulamani P (2018) Smart 2D-2D Nano-Composite Adsorbents of LDH-carbonaceous materials for the removal of aqueous toxic heavy metal ions: a review. Curr Environ Eng 5:20–34

    Article  CAS  Google Scholar 

  • Tokalıoğlu Ş, Yavuz E, Şahan H, Çolak SG, Ocakoğlu K, Kaçer M, Patat Ş (2016) Ionic liquid coated carbon nanospheres as a new adsorbent for fast solid phase extraction of trace copper and lead from sea water, wastewater, street dust and spice samples. Talanta 159:222–230

    Article  CAS  Google Scholar 

  • Tonle IK, Ngameni E, Njopwouo D, Carteret C, Walcarius A (2003) Functionalization of natural smectite-type clays by grafting with organosilanes: physico-chemical characterization and application to mercury(ii) uptake. Phys Chem Chem Phys 5:4951–4961

    Article  CAS  Google Scholar 

  • Tran HN, You SJ, Chao HP (2016) Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: a comparison study. J Environ Chem Eng 4:2671–2682

    Article  CAS  Google Scholar 

  • Trovato V, Colleoni C, Castellano A, Plutino MR (2018) The key role of 3-glycidoxypropyltrimethoxysilane sol–gel precursor in the development of wearable sensors for health monitoring. J Sol-Gel Sci Technol 87:27–40

    Article  CAS  Google Scholar 

  • Turull M, Elias G, Fontàs C, Díez S (2017) Exploring new DGT samplers containing a polymer inclusion membrane for mercury monitoring. Environ Sci Pollut Res 24:10919–10928

    Article  CAS  Google Scholar 

  • US_Department_of_the_Interior (2020) Tin data sheet—mineral commodity summaries, U.S. Geological Survey

  • Vardhan KH, Kumar PS, Panda RC (2019) A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. J Mol Liq 290:111197

    Article  CAS  Google Scholar 

  • Vázquez MI, Romero V, Fontàs C, Anticó E, Benavente J (2014) Polymer inclusion membranes (PIMs) with the ionic liquid (IL) Aliquat 336 as extractant: effect of base polymer and IL concentration on their physical–chemical and elastic characteristics. J Membr Sci 455:312–319

    Article  CAS  Google Scholar 

  • Vera R, Gelde L, Anticó E, Martínez de Yuso MV, Benavente J, Fontàs C (2017) Tuning physicochemical, electrochemical and transport characteristics of polymer inclusion membrane by varying the counter-anion of the ionic liquid Aliquat 336. J Membr Sci 529:87–94

    Article  CAS  Google Scholar 

  • Wieszczycka K, Filipowiak K, Wojciechowska I, Aksamitowski P (2020) Novel ionic liquid-modified polymers for highly effective adsorption of heavy metals ions. Sep Purif Technol 236:116313

    Article  CAS  Google Scholar 

  • Wu J, Lee NY (2014) One-step surface modification for irreversible bonding of various plastics with a poly(dimethylsiloxane) elastomer at room temperature. Lab Chip 14:1564–1571

    Article  CAS  Google Scholar 

  • Yadav VB, Gadi R, Kalra S (2019) Clay based nanocomposites for removal of heavy metals from water: a review. J Environ Manag 232:803–817

    Article  CAS  Google Scholar 

  • Yang X, Zhou T, Ren B, Hursthouse A, Zhang Y (2018) Removal of Mn (II) by sodium alginate/graphene oxide composite double-network hydrogel beads from aqueous solutions. Sci Rep 8:10717

    Article  CAS  Google Scholar 

  • Yavir K, Marcinkowski Ł, Marcinkowska R, Namieśnik J, Kloskowski A (2019) Analytical applications and physicochemical properties of ionic liquid-based hybrid materials: a review. Anal Chim Acta 1054:1–16

    Article  CAS  Google Scholar 

  • Zang S, Guo J, Cui A, Li D, Liu D (1996) Measurement of the half life of 126Sn using a radiochemical method. J. Radioanal. Nucl. Ch. 212:93–99

    Article  Google Scholar 

  • Zawierucha I, Kozlowski C, Malina G (2013) Removal of toxic metal ions from landfill leachate by complementary sorption and transport across polymer inclusion membranes. Waste Manag 33:2129–2136

    Article  CAS  Google Scholar 

Download references

Funding

This work has been financially supported by the University of Messina (Research&Mobility2017 Project cod. 009041), the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) (PHETRUM Project cod. CTQ2017-82761-P), the European Regional Development Fund (FEDER), and the Italian National Research Council (CNR).

Author information

Authors and Affiliations

Authors

Contributions

Gabriele Lando: conceptualization, methodology, writing - reviewing and editing, formal analysis, software, data curation; Olivia Gomez-Laserna: funding acquisition, methodology, writing - reviewing and editing, formal analysis, data curation; Edoardo Proverbio: data curation, writing - reviewing and editing, formal analysis; Amani Khaskhoussi: methodology, investigation, data curation; Daniela Iannazzo: data curation, formal analysis; Maria Rosaria Plutino: methodology, funding acquisition, investigation; Concetta De Stefano: conceptualization, methodology, software, supervision, funding acquisition, resources; Clemente Bretti: conceptualization, validation, investigation, writing - original draft preparation; Paola Cardiano: conceptualization, writing - reviewing and editing, writing - original draft preparation, supervision, methodology, project administration, resources, visualization.

Corresponding author

Correspondence to Gabriele Lando.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Angeles Blanco

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 392 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lando, G., Gomez-Laserna, O., Proverbio, E. et al. Towards a rational design of materials for the removal of environmentally relevant cations: polymer inclusion membranes (PIMs) and surface-modified PIMs for Sn2+ sequestration in aqueous solution. Environ Sci Pollut Res 28, 51072–51087 (2021). https://doi.org/10.1007/s11356-021-14328-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14328-0

Keywords

Navigation