Skip to main content
Log in

Assessment of Atmospheric Mercury Deposition in the Vicinity of Artisanal and Small-Scale Gold Mines Using Glycine max as Bioindicators

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Artisanal and Small-scale Gold Mining (ASGM) is one of the main sources of global Hg emissions and is present over a wide territorial in the southern Amazonia. In this region, there is a rapid approximation between agricultural and livestock activities and the impact of this close proximity having little or no evaluation. Thus, we have determined the Hg concentration in soybean plants in an area with ASGMs activities. The concentration of Hg in plants was higher in the vicinity of the ASGMs, where the Hg leaf concentration was three times higher, suggesting a higher atmospheric metal deposition in this area. It is estimated that atmospheric Hg deposition in the vicinity of ASGMs of up to 6.94 g km−2 during the contact time between leaves and atmosphere. The translocation and bioaccumulation factors reinforce the effect of atmospheric Hg deposition, mainly, in the leaves. No impact was observed on the edible part of the plant due to the proximity of the ASGMs. It can be inferred that our results point to considerable rates of Hg emissions in the southern Amazon region and indicate the need to monitor these emissions so as to facilitate the taking of pollution mitigation actions. Soybean plants have a potential use as a bioindicator species of Hg contamination from ASGM, and the proposed method consists of an viable alternative, which can be used for the biomonitoring of long-term Hg emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akagi, H. & Nishimura, H. (1991) Speciation of mercury in the environment. In: Suzuki T., Imura N. & Clarkson T.W. (Eds.) Advances in Mercury Toxicology. Rochester Series on Environmental Toxicity. Boston: Springer.

  • Aransiola, S. B., Ijah, U. J. J., & Abioye, O. P. (2013). Phytoremediation of lead polluted soil by Glycine max L. Applied and Environmental Soil Science. https://doi.org/10.1155/2013/631619.

  • Asaduzzaman, A., Riccardi, D., Afaneh, A. T., Cooper, S. J., Smith, J. C., Wang, F., et al. (2019). Environmental mercury chemistry - in silico. Accounts of Chemical Research. https://doi.org/10.1021/acs.accounts.8b00454.

  • Bank, M. S. (2020). The mercury science-policy interface: history, evolution and progress of the Minamata Convention. Sciece of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.137832.

  • Bansa, D. K., Awua, A. K., Boatin, R., Adom, T., Brown-Appiah, E. C., Amewosina, K. K., et al. (2017). Cross-sectional assessment of infants’ exposure to toxic metals through breast milk in a prospective cohort study of mining communities in Ghana. BMC Public Health. https://doi.org/10.1186/s12889-017-4403-8.

  • Barghigiani, C., & Ristori, T. (1994). Mercury levels in agricultural products of Mt. Amiata (Tuscany, Italy). Archives of Environmental Contamination and Toxicology., 26, 329–334.

    Article  CAS  Google Scholar 

  • BRASIL (2002). Ministério do Meio Ambiente. Diagnóstico do setor mineral de Mato Grosso. http://www.mme.gov.br/documents/36108/406547/Diagn%C3%B3stico+do+Setor+Mineral+do+Estado+de+Mato+Grosso.pdf/b235c14b-48bd-a0c6-54c8-e5ec1a94fdcb?version=1.0 Accessed 13 May 2020.

  • BRASIL (2013). Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução da Diretoria Colegiada 42, de 29 de agosto de 2013. Dispõe sobre o Regulamento Técnico MERCOSUL sobre Limites Máximos de Contaminantes Inorgânicos em Alimentos. http://portal.anvisa.gov.br/documents/33880/2568070/rdc0042_29_08_2013.pdf/c5a17d2d-a415-4330-90db-66b3f35d9fbd. Accessed 25 May 2020.

  • BRASIL (2018a). Presidência da República, Decreto 9470 de 14 de agosto de 2018, Promulga a Convenção de Minamata sobre Mercúrio, firmada pela República Federativa do Brasil, em Kumamoto, em 10 de outubro de 2013, Brasília, 2018. http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/Decreto/D9470.htm. Accessed 11 May 2020.

  • BRASIL (2018b). Ministério do Meio Ambiente, Inventário Nacional de Emissões e Liberações de Mercúrio no Âmbito da Mineração Artesanal e de Pequena Escala no Brasil, Brasília. https://www.mma.gov.br/images/arquivo/80037/Mercurio/Projeto%20MIA/Produtos%20Consultorias/Inventario_CETEM/3.Relatorio-Final-3.pdf. Accessed 11 May 2020.

  • BRASIL (2019). Permanent Mission of Brasil to the United Nations Office and other International Organizations in Geneva, Ofício 362/2019, Notification About Art. 7 of Miamata Convention, Geneva. http://www.mercuryconvention.org/Portals/11/documents/Notifications/Brazil_Article7.3_ASGMnotification_20Nov2019.pdf. Accessed 11 May 2020.

  • Casagrande, G. C. R., dos Reis, C., Arruda, R., Andrade, R. L. T. & Battirola, L. D. (2018). Bioaccumulation and biosorption of mercury by Salvinia biloba Raddi (Salviniaceae). Water, Air and Soil Pollution. https://doi.org/10.1007/s11270-018-3819-9.

  • CONAB – Companhia Nacional de Abastecimento (2019). Acompanhanento da safra brasileira de grãos. 6: Safra 2018/2019, n° 12. Brasília: Conab. https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos. Accessed 13 May 2020.

  • Dhaliwal, S. S., Singh, J., Taneja, P. K. & Mandal, A. (2020). Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-06967-1.

  • Eckley, C. S., Gilmour, C. C., Janssen, S., Luxton, T. P., Randall, L. W., & Austin, C. (2020). The assessment and remediation of mercury contaminated sites: a review of current approaches. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.136031.

  • Egler, S. G., Rodrigues-Filho, S., Villas-Bôas, R. C. & Beinhoff, C. (2006). Evaluation of mercury pollution in cultivated and wild plants from two small communities of the Tapajo’s gold mining reserve, Pará State, Brazil. Science of the Total Environment. https://www.researchgate.net/publication/7530828

  • Elsokkary, I. H. (1982). Contamination of soils and plants by mercury as influenced by the proximity to industries in Alexandria. Egypt. The Science of the Total Environment., 23, 55–60.

    Article  CAS  Google Scholar 

  • Esbrí, J. M., Cacovean, H. & Higueras, P. (2018). Usage proposal of a common urban decorative tree (Salix alba L.) tomonitor the dispersion of gaseous mercury: a case study from Turda (Romania). Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.11.007.

  • Evers, D. C. & Sunderland, E. (2019). Technical information report on mercury monitoring in biota: proposed components towards a strategic long-term plan for monitoring mercury in fish and wildlife globally. Genebra: UN Environment Programme, Chemicals and Health Branch. https://www.unenvironment.org/explore-topics/chemicals-waste/what-we-do/mercury/global-mercury-monitoring. Accessed 20 May 2020.

  • Ferreira, D. F. (2010). SISVAR - Sistema de análise de variância. Versão 5.3. Lavras-MG: UFLA.

  • González-Montaña, J. R., Senís, E., Alonso, A. J., Alonso, M. E., Alonso, M. P. & Domínguez, J. C. (2019). Some toxic metals (Al, As, Mo, Hg) from cow’s milk raised in a possibly contaminated area by different sources. Environmental Sciend and Pollution Research. https://doi.org/10.1007/s11356-019-06036-7.

  • IBGE, (2019). Instituto Brasileiro de Geografia e Estatística, Diretoria de Pesquisas, Coordenação de População e Indicadores Sociais, Estimativas da população residente com data de referência 1o de julho de 2019. Brasília. https://cidades.ibge.gov.br/ Accessed 13 May 2020.

  • JECFA (2010). Evaluation of certain food additives and contaminants. 72th Report of the Joint FAO/WHO Expert Committee on Food Additive. WHO Technical Report Series 959. https://www.who.int/ipcs/publications/jecfa/reports/trs940.pdf Accessed 20 May 2020.

  • Lima, M., Junior, C. A. S., Rausch, L., Gibbs, H. K. & Johann, J. A. (2019). Demystifying sustainable soy in Brazil. Land Use Police. https://doi.org/10.1016/j.landusepol.2018.12.016.

  • Liu, W., Li, M., Zhang, M., Wang, D., Guo, Z., Long, S., et al. (2020). Estimating leaf mercury content in Phragmites australis based on leaf hyperspectral reflectance. Ecosystem Health and Sustainability. https://doi.org/10.1080/20964129.2020.1726211.

  • Lyman, S. N., Cheng, I., Gratz, L. E., Weiss-Penzias, P., & Zhang, L. (2020). An updated review of atmospheric mercury. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.135575.

  • Ma, M., Du, H., & Wang, D. (2019). A new perspective is required to understand the role of forest ecosystems in global mercury cycle: a review. Bulletin of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00128-019-02569-2.

  • Mariano, C., Mello, I. S., Barros, B. M., Silva, G. F., Terezo, A. J., & Soares, M. A. (2020). Mercury alters the rhizobacterial community in Brazilian wetlands and it can be bioremediated by the plant-bacteria association. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-07913-2.

  • Marrugo-Negrete, J., Durango-Hernández, J., Díaz-Fernández, L., Urango-Cárdenas, I., Araméndiz-Tatis, H., Vergara-Flórez, V., et al. (2020). Transfer and bioaccumulation of mercury from soil in cowpea in gold mining sites. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126142.

  • Marrugo-Negrete, J., Marrugo-Madrid, S., Pinedo-Hernández, J., Durango-Hernández, J. & Díez, S. (2016). Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2015.10.117.

  • MHPRC (2012). (Ministry of Health of the People’s Republic of China). Maximum levels of contaminants in foods (GB2762-2012). Beijing, China: MHPRC (in Chinese).

  • Murakami, M. & Ae, N. (2009). Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.). Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2008.06.003.

  • Natasha, M. S., Khalid, S. Bibi, I. Bundschuh, J. Niazi, N. K. & Dumat, C. (2020). A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2019.134749.

  • Navrátil, T., Shanley, J. B., Rohovec, J., Oulehle, F., Šimeček, M., Houška, J., et al. (2016). Soil mercury distribution in adjacent coniferous and deciduous stands highly impacted by acid rain in the Ore Mountains, Czech Republic. Applies Geochemistry. https://doi.org/10.1016/j.apgeochem.2016.10.005.

  • Neto, A. P. N., Costa, L. C. S. M., Kikuchi, A. N. S., Furtado, D. M. S., Araujo, M. Q. & Melo, M. C. C. (2012). Method validation for the determination of total mercury in fish muscle by cold vapour atomic absorption spectrometry. Food Additives and Contaminants. https://doi.org/10.1080/19440049.2011.642009.

  • Obrist, D., Pearson, C., Webster, J., Kane, T., Lin, C-J., Aiken, G. R. et al. (2016). A synthesis of terrestrial mercury in the western United States: Spatial distribution defined by land cover and plant productivity. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2015.11.104.

  • Osuna-Vallejo, V., Sáenz-Romero, C., Escalera-Vázquez, L., Barrera, E., & Lindig-Cisneros, R. (2019). Total mercury in plant tissue from a mining landscape in Western Mexico. Bulletin of Environmental Contamination na Toxicology. https://doi.org/10.1007/s00128-018-2488-0.

  • Ouédraogo, O. & Amyot M. (2011). Effects of various cooking methods and food components on bioaccessibility of mercury from fish. Environmental Research. https://doi.org/10.1016/j.envres.2011.09.018.

  • Petter, F. A., Leite, L. F. C., Machado, D. M., Junior, B. H. M., Lima, L. B., Freddi, O. S. et al. (2019). Microbial biomass and organic mater in na oxisol under application of biochar. Bragantia. https://doi.org/10.1590/1678-4499.2018237

  • Pietro-Souza, W., Pereira, F. C., Mello, I. V., Stachack, F. F. F., Terezo, A. J., da Cunha, C. N. et al. (2020). Mercury resistance and bioremediation mediated by endophytic fungi. https://doi.org/10.1016/j.chemosphere.2019.124874.

  • Richie, S. W., Thompson, H. E., & Benson, G. O. (1997). Como a planta da soja se desenvolve. Piracicaba: Potafos.

    Google Scholar 

  • Salazar, M. J. & Pignata, M. L. (2014). Lead accumulation in plants grown in polluted soils. Screening of native species for phytoremediation. Journal of Geochemical Exploration. https://doi.org/10.1016/j.gexplo.2013.11.003.

  • Santos, R. C., Lima, M., Junior, C. A. S. & Battirola, L. D. (2019). Disordered conversion of vegetation committees connectivity between forest fragments in the Brazilian Legal Amazon. Applied Geography https://doi.org/10.1016/j.apgeog.2019.102082.

  • Scott, A. & Knott, M. (1974). Cluster-analysis method for grouping means in analysis of variance. Biometrics, Washington D.C., 30:507-512.

  • Seccatore, J., Veiga, M., Origliasso, C., Marin, T., & Tomi, G. (2014). An estimation of the artisanal small-scale production of gold in the world. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2014.05.003.

  • Sommar, J., Osterwalder, S. & Zhu, W. (2020). Recent advances in understanding and measurement of Hg in the environment: Surface-atmosphere exchange of gaseous elemental mercury (Hg0). Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.137648.

  • Souza, A. P., Mota, L. L., Zamadei, T., Martim, C. C., Almeida, F. T. & Paulino, J. (2013). Classificação climática e balanço hídrico climatológico no estado de Mato Grosso. Nativa. http://periodicoscientificos.ufmt.br/ojs/index.php/nativa

  • Tang, W.-L., Liu, Y.-R., Guan, W.-Y., Zhong, H., Qu, X.-M., & Zhang, T. (2020). Understanding mercury methylation in the changing environment: recent advances in assessing microbial methylators and mercury bioavailability. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.136827.

  • UN Environment (2002). Global mercury assessment – 2002. U.N. Environment Programme, chemicals. Geneva, Switzerland. https://wedocs.unep.org/handle/20.500.11822/12297. Accessed 21 May 2020.

  • UN Environment (2013). Minamata convention on mercury, New York. https://treaties.un.org/doc/Treaties/2013/10/20131010%2011-16%20AM/CTC-XXVII-17.pdf. Accessed 11 May 2020.

  • UN Environment (2019). Global mercury assessment – 2018. U.N. Environment Programme, Chemicals and Health Branch. Geneva, Switzerland. ISBN: 978-92-807-3744-8. https://www.unenvironment.org/resources/publication/global-mercury-assessment-2018.

  • Wang, Q., Zhang, J., Xin, X., Zhao, B., Ma, D., & Zhang, H. (2016). The accumulation and transfer of arsenic and mercury in the soil under a long-term fertilization treatment. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-015-1227-y.

  • Wang, X., Tam, N. F., He, H., & Ye, Z. (2015). The role of root anatomy, organic acids and iron plaque on mercury accumulation in rice. Plant and Soil. https://doi.org/10.1007/s11104-015-2537-y.

  • Weyens, N., Thijs, S., Popek, R., Witters, N., Przybysz, A., Espenshade, J., et al. (2015). The role of plant–microbe interactions and their exploitation for phytoremediation of air pollutants. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms161025576.

  • Zheng, N., Wang, Q. C., & Zheng, D. M. (2007). Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao zinc plant in China via consumption of vegetables. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2007.05.002.

  • Zhu, S., Zhang, Z., & Zagar, D. (2018). Mercury transport and fate models in aquatic systems: a review and synthesis. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2018.04.397.

Download references

Funding

The authors would like to thank the Research Support Foundation of the State of Mato Grosso [227320/2015] for the granting of a PIBIC scholarship [2018/2019] agreement UFMT/FAPEMAT to the Financier of Studies and Projects(FINEP) and to CAPES, Coordination for the Improvement of Higher Education Personnel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Cristina Rabello Casagrande.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casagrande, G.C.R., Franco, D.N.d., Moreno, M.I.C. et al. Assessment of Atmospheric Mercury Deposition in the Vicinity of Artisanal and Small-Scale Gold Mines Using Glycine max as Bioindicators. Water Air Soil Pollut 231, 551 (2020). https://doi.org/10.1007/s11270-020-04918-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04918-y

Keywords

Navigation