Skip to main content
Log in

Polymerization and Carbonization Behaviors of 2-Methylnaphthalene in Contaminated Soil During Thermal Desorption

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Despite the important niche and broad applicability of thermal remediation (TD), little work has been done to discuss chemical reactions of methylnaphthalene contaminated soil. The 2-methylnaphthalene desorption amount (MDA) of TD is studied here under different conditions, and the carbonation (chemically polymerized or condensed) behavior of 2-methylnaphthalene is explained by analyzing the changes of soil organic carbons (SOCs), off-gas products, and surface chemical properties. It indicates that the influence sequence of MDA from high to low is heating time, heating temperatures, and flow rates of carrier gas. MDA increases steadily with the increase of temperatures (200–300 °C) but decreases slightly after 300 °C; the reason may be the chemical conversion of 2-methylnaphthalene. GC-MS analysis of off-gas confirms that partial 2-methylnaphthalene is polymerized to form 2-methylbenzo[b]thiophene and 2,4-di-tert-butylpheno at 400 °C, which is the first step of carbonization process. The x-ray photoelectron spectroscopy results of soil indicate that the C content decreases, but C–(C, H) chemical structure increases, indicating that new carbonaceous substances are generated. A layer of “char” is seen by scanning electron microscope to be left on the surface of the soil particles. As the temperature increases (200–400 °C), the SOCs generally decreases from 1.14 to 0.82%, which is the result of the equilibrium between SOCs pyrolysis and 2-methylnaphthalene carbonization. Therefore, partial 2-methylnaphthalene turns into smaller organic molecules in desorption gas of TD, meanwhile is accompanied by its chemical conversion to non-volatile products, which are attached to remediated soils and then improve soil properties and increase their fertility.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aresta, M., Dibenedetto, A., Fragale, C., Giannoccaro, P., Pastore, C., Zammiello, D., & Ferragina, C. (2008). Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd- and Rh-supported catalysts. Chemosphere, 70(6), 1052–1058.

    Article  CAS  Google Scholar 

  • Bai, S. H., Chen, T., Qi, Z. F., Liu, J., Lu, S., Bo, Z., & Li, X. (2014). Effect of carrier gas flow rate and heating rate on thermal desorption of polychlorinated biphenyls in contaminated soil. CIESC Journal, 6, 2256–2263.

    Google Scholar 

  • Bertero, M., de la Puente, G., & Sedran, U. (2011). Effect of pyrolysis temperature and thermal conditioning on the coke-forming potential of bio-oils. Energy & Fuels, 25(3), 1267–1275.

    Article  CAS  Google Scholar 

  • Bounaceur, R., Leininger, J., Lorant, F., Marquaire, P., & Burklé-Vitzthum, V. (2017). Kinetic modeling of 1-methylnaphthalene pyrolysis at high pressure (100bar). Journal of Analytical and Applied Pyrolysis, 124, 542–562.

    Article  CAS  Google Scholar 

  • Bulmau, C., Badea, A., Cocârţă, D., & G., P. (2013). Evaluation the non-oxidative thermal technology for removal of petroleum products from contaminated soils. Present Environment and Sustainable Development, 7, 165–175.

    Google Scholar 

  • Bulmău, C., Mărculescu, C., Lu, S., & Qi, Z. (2014). Analysis of thermal processing applied to contaminated soil for organic pollutants removal. Journal of Geochemical Exploration, 147, 298–305.

    Article  CAS  Google Scholar 

  • Certini, G. (2005). Effects of fire on properties of forest soils: a review. Oecologia, 143(1), 1–10.

    Article  Google Scholar 

  • Ding, D., Song, X., Wei, C., & LaChance, J. (2019). A review on the sustainability of thermal treatment for contaminated soils. Environmental Pollution, 253, 449–463.

    Article  CAS  Google Scholar 

  • Dixon, J. B., Weed, S. B., & Parpitt, R. L. (1990). Minerals in soil environments. Soil Science, 150(2), 562.

    Article  Google Scholar 

  • Falciglia, P. P., Giustra, M. G., & Vagliasindi, F. G. A. (2011). Low-temperature thermal desorption of diesel polluted soil: Influence of temperature and soil texture on contaminant removal kinetics. Journal of Hazardous Materials, 185(1), 392–400.

    Article  CAS  Google Scholar 

  • Filley, R. M., & Eser, S. (1997). Analysis of hydrocarbons and sulfur compounds in two FCC decant oils and their carbonization products. Energy & Fuels, 11(3), 623–630.

    Article  CAS  Google Scholar 

  • Gilot, P., Howard, J. B., & Peters, W. A. (1997). Evaporation phenomena during thermal decontamination of soils. Environmental Science & Technology, 31(2), 461–466.

    Article  CAS  Google Scholar 

  • Kang, S., Kim, Y., Shin, J., & Kim, E. (2010). Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid. Applied Biochemistry and Biotechnology, 160(3), 780–790.

    Article  CAS  Google Scholar 

  • Kastanek, F., Topka, P., Soukup, K., Maleterova, Y., Demnerova, K., Kastanek, P., & Solcova, O. (2016). Remediation of contaminated soils by thermal desorption; effect of benzoyl peroxide addition. Journal of Cleaner Production, 125, 309–313.

    Article  CAS  Google Scholar 

  • Kim, Y., Kim, J., & Kim, E. (2009). Mobilization and biodegradation of 2-methylnaphthalene by amphiphilic polyurethane nano-particle. Applied Biochemistry and Biotechnology, 159(1), 1–10.

    Article  CAS  Google Scholar 

  • Kinney, T. J., Masiello, C. A., Dugan, B., Hockaday, W. C., Dean, M. R., Zygourakis, K., & Barnes, R. T. (2012). Hydrologic properties of biochars produced at different temperatures. Biomass and Bioenergy, 41, 34–43.

    Article  CAS  Google Scholar 

  • Kopinke, F., & Remmler, M. (1995). Reactions of hydrocarbons during thermodesorption from sediments. Thermochimica Acta, 263, 123–139.

    Article  CAS  Google Scholar 

  • Levitt, J. S., Nguessan, A. L., Rapp, K. L., & Nyman, M. C. (2003). Remediation of α-methylnaphthalene-contaminated sediments using peroxy acid. Water Research, 37(12), 3016–3022.

    Article  CAS  Google Scholar 

  • Li, J., Sun, X., Yao, Z., & Zhao, X. (2014). Remediation of 1, 2, 3-trichlorobenzene contaminated soil using a combined thermal desorption–molten salt oxidation reactor system. Chemosphere, 97, 125–129.

    Article  CAS  Google Scholar 

  • Li, D., Xu, W., Mu, Y., Yu, H., Jiang, H., & Crittenden, J. C. (2018). Remediation of petroleum-contaminated soil and simultaneous recovery of oil by fast pyrolysis. Environmental Science & Technology, 52(9), 5330–5338.

    Article  CAS  Google Scholar 

  • Liu, W., Zhong, X., Han, J., Qin, W., Liu, T., Zhao, C., & Chang, Z. (2018). Kinetic study and pyrolysis behaviors of spent LiFePO4 batteries. ACS Sustainable Chemistry & Engineering, 7.

  • Liu, J., Zhang, H., Yao, Z., Li, X., & Tang, J. (2019). Thermal desorption of PCBs contaminated soil with calcium hydroxide in a rotary kiln. Chemosphere, 220, 1041–1046.

    Article  CAS  Google Scholar 

  • Liu, Y., Zhang, Q., Wu, B., Li, X., Ma, F., Li, F., & Gu, Q. (2020). Hematite-facilitated pyrolysis: an innovative method for remediating soils contaminated with heavy hydrocarbons. Journal of Hazardous Materials, 383, 121165.

    Article  CAS  Google Scholar 

  • Mechati, F., Roth, E., Renault, V., Risoul, V., Trouve, G., & Gilot, P. (2004). Pilot scale and theoretical study of thermal remediation of soils. Environmental Engineering Science, 21(3), 361–370.

    Article  CAS  Google Scholar 

  • Na, W., Shu-quan, Z., & Mo, C. (2009). Preparation and performance study on lignite briquette coke. International conference on environmental science & information application technology (Vol. 1, pp. 190-193). IEEE.

  • N'Guessan, A. L., Carignan, T., & Nyman, M. C. (2004). Optimization of the peroxy acid treatment of α-methylnaphthalene and benzo[a]pyrene in sandy and silty-clay sediments. Environmental Science & Technology, 38(5), 1554–1560.

    Article  CAS  Google Scholar 

  • Pape, A., Switzer, C., McCosh, N., & Knapp, C. W. (2015). Impacts of thermal and smouldering remediation on plant growth and soil ecology. Geoderma, 243-244, 1–9.

    Article  CAS  Google Scholar 

  • Qi, Z., Chen, T., Bai, S., Yan, M., Lu, S., Buekens, A., & Li, X. (2014). Effect of temperature and particle size on the thermal desorption of PCBs from contaminated soil. Environmental Science and Pollution Research, 21(6), 4697–4704.

    Article  CAS  Google Scholar 

  • Qian, T., Li, D., & Jiang, H. (2014). Thermochemical behavior of tris(2-butoxyethyl) phosphate (TBEP) during co-pyrolysis with biomass. Environmental Science & Technology, 48(18), 10734–10742.

    Article  CAS  Google Scholar 

  • Remmler, M., & Kopinke, F. D. (1995). Thermal conversion of hydrocarbons on solid matrices. Thermochimica Acta, 263, 113–121.

    Article  CAS  Google Scholar 

  • Sharanagouda, U., & Karegoudar, T. B. (2001). Degradation of 2-methylnaphthalene by Pseudomonas sp. strain NGK1. Current Microbiology, 43(6), 440–443.

    Article  CAS  Google Scholar 

  • Vidonish, J. E., Zygourakis, K., Masiello, C. A., Gao, X., Mathieu, J., & Alvarez, P. J. (2016a). Pyrolytic treatment and fertility enhancement of soils contaminated with heavy hydrocarbons. Environmental Science & Technology, 50(5), 2498–2506.

    Article  CAS  Google Scholar 

  • Vidonish, J. E., Zygourakis, K., Masiello, C. A., Sabadell, G., & Alvarez, P. J. J. (2016b). Thermal treatment of hydrocarbon-impacted soils: a review of technology innovation for sustainable remediation. Engineering, 2(4), 426–437.

    Article  CAS  Google Scholar 

  • Vidonish, J. E., Alvarez, P. J., & Zygourakis, K. (2018). Pyrolytic remediation of oil-contaminated soils: Reaction mechanisms, soil changes, and implications for treated soil fertility. Industrial & Engineering Chemistry Research, 57(10), 3489–3500.

    Article  CAS  Google Scholar 

  • Wang, G., & Eser, S. (2007). Molecular composition of the high-boiling components of needle coke Feedstocks and Mesophase development. Energy & Fuels, 21(6), 3563–3572.

    Article  CAS  Google Scholar 

  • Winters, K., O'Donnell, R., Batterton, J. C., & Van Baalen, C. (1976). Water-soluble components of four fuel oils: Chemical characterization and effects on growth of microalgae. Marine Biology, 36(3), 269–276.

    Article  CAS  Google Scholar 

  • Yang, J., & Lu, M. (2005). Thermal growth and decomposition of methylnaphthalenes. Environmental Science & Technology, 39(9), 3077–3082.

    Article  CAS  Google Scholar 

  • Yang, J., Wang, X., Li, L., Shen, K., Lu, X., & Ding, W. (2010). Catalytic conversion of tar from hot coke oven gas using 1-methylnaphthalene as a tar model compound. Applied Catalysis B: Environmental, 96(1), 232–237.

    Article  CAS  Google Scholar 

  • Zhao, Y., Wei, F., & Yu, Y. (2010). Effects of reaction time and temperature on carbonization in asphaltene pyrolysis. Journal of Petroleum Science and Engineering, 74(1), 20–25.

    Article  CAS  Google Scholar 

  • Zhu, K., Jia, H., Zhao, S., Xia, T., Guo, X., Wang, T., & Zhu, L. (2019). Formation of environmentally persistent free radicals on microplastics under light irradiation. Environmental Science & Technology, 53(14), 8177–8186.

    Article  CAS  Google Scholar 

  • Zihms, S. G., Switzer, C., Irvine, J., & Karstunen, M. (2013). Effects of high temperature processes on physical properties of silica sand. Engineering Geology, 164, 139–145.

    Article  Google Scholar 

Download references

Funding

This research is supported by the National Key R&D Program of China (2018YFC1802100 and 2019YFC1803800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yimin Sang or Qingbao Gu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Sang, Y., Yu, W. et al. Polymerization and Carbonization Behaviors of 2-Methylnaphthalene in Contaminated Soil During Thermal Desorption. Water Air Soil Pollut 231, 505 (2020). https://doi.org/10.1007/s11270-020-04886-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04886-3

Keywords

Navigation