Skip to main content
Log in

Electro-oxycoagulation Efficiency for the Treatment of Domestic Effluents

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Although environment protection efforts worldwide, the chemistry and biological contamination of waters represents an important challenge to be overcome, especially regarding its contamination by domestic wastewater effluents. In this context, this research presented an analysis by using an innovative wastewater treatment system for domestic effluents based on the electro-oxycoagulation approach implanted in wastewater treatment station located at Palma Sola, Santa Catarina, Brazil. We evaluated samples from domestic effluent (before and after treatment), fountain water, and river water collected from the municipality water system, as well as investigated the residual compound yielded by wastewater treatment. In these samples, we performed physicochemical analysis, investigation of viable helminth eggs, and toxicity and microbiological measurements before and after the treatment. Further, the levels of contaminant metals by X-ray fluorescence-based technique were analyzed. Results show an improvement in the quality of treated water, as demonstrated by microbiological, physicochemical, toxicity, and metal analysis of effluent after treatment. After treatment, river water and fountain water levels of metals in accordance with the maximum limits allowed by Brazilian regulatory agencies. Analysis of residual compound indicated that the workers that handle the residue were not contaminated with the identified metals. Thus, the electro-oxycoagulation-based method demonstrated high efficiency for the treatment of domestic effluents and further prevents contamination of the rivers by the released effluent without treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aggelis, G., Iconomou, D., Christou, M., Bokas, D., Kotzailias, S., Christou, Z., Tsagaou, V., & Papanikolau, S. (2003). Phenolic removal in a model olive oil mill wastewater using Pleurotus ostreatus in a bioreactor cultures and biological evaluation of the process. Water Research. https://doi.org/10.1016/S0043-1354(03)00313-0.

  • Aguiar, M. R. M. P., Novaes, A. C., & Guarino, A. W. S. (2002). Heavy metals remotion of industrial effluents by aluminosilicates. Química Nova. https://doi.org/10.1590/S0100-40422002000700015.

  • Ahmed, T., Scholz, M., Al-Faraj, F., & Wajeeha, N. (2016). Water-related impacts of climate change on agriculture and subsequently on public health: a review for generalists with particular reference to Pakistan. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph13111051.

  • Alagha, O., Allazem, A., Bukhari, A. A., Anil, I., & Mu’azu, N. D. (2020). Suitability of SBR for wastewater treatment and reuse pilot-scale reactor operated in different anoxic conditions. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph17051617.

  • Al-Naemi, H. A., & Das, S. C. (2020). Cadmium-induced endothelial dysfunction mediated by asymmetric dimethylarginine. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-08116-5.

  • Anfruns-Estrada, E., Bruguera-Casamada, C., Salvadó, H., Brillas, E., Sirés, I., & Araujo, R. M. (2017). Inactivation of microbiota from urban wastewater by single and sequential electrocoagulation and electro-Fenton treatments. Water Research. https://doi.org/10.1016/j.watres.2017.09.056.

  • ANVISA (Agência Nacional de Vigilância Sanitária). (2001). Resolution number 12 of january 02, 2001. http://portal.anvisa.gov.br/documents/33880/2568070/RDC_12_2001.pdf/15ffddf6-3767-4527-bfac-740a0400829b.

  • APHA/AWWA/WEF. (2012). Standard Methods for the examination of water and wastewater (22th ed.). APHA: Washington.

    Google Scholar 

  • Balci, S., & Dincel, Y. (2002). Ammonium ion adsorption with sepiolite: use of transient uptake method. Chemical Engineering and Processing. https://doi.org/10.1016/S0255-2701(01)00104-0.

  • Batista, R. O., Barreto, H. B. F., Alves, S. M. C., de Santos, W. O., & Freire, F. G. C. (2012). Nitrate removal and electrical conductivity in biofilters operating with first sewage. Revista Global Science and Technology, 5(1), 59–69.

    Google Scholar 

  • Brienza, M., Nir, S., Plantard, G., Goetz, V., & Chiron, S. (2019). Combining micelle-clay sorption to solar photo-Fenton processes for domestic wastewater treatment. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-018-2491-3.

  • Campos, J. C., Borges, R. M. H., Oliveira Filho, A. M., Nóbrega, R., & Sant’anna, J. G. L. (2001). Oilfield wastewater treatment by combined microfiltration and biological processes. Water Research. https://doi.org/10.1016/S0043-1354(01)00203-2.

  • CETESB (Companhia Ambiental do Estado de São Paulo) (2018) Inland water quality report for the state of São Paulo-2017. https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2018/06/Relat%C3%B3rio-de-Qualidade-das-%C3%81guas-Interiores-no-Estado-de-S%C3%A3o-Paulo-2017.pdf. Accessed 2 Apr 2020.

  • Chavan, R., & Mutnuri, S. (2020). Domestic wastewater treatment by constructed wetland and microalgal treatment system for the production of value-added products. Environmental Technology. https://doi.org/10.1080/09593330.2020.1726471.

  • Chowdhury, S., Annabelle, K., & Klaus, F. Z. (2016). Arsenic contamination of drinking water and mental health. Social Science Research Network. https://doi.org/10.2139/ssrn.2811583.

  • Clen, K. P., Cericato, A., Sehnem, S., Zilles, A., & Martins, E. S. (2013). Environmental management in Palma Sola City - Sc: alternative technologies in the treatment of domestic seawage. Revista Gestão e Conhecimento, 7(1), 75–104.

    Google Scholar 

  • Colares, C. J. G., & Sandri, D. (2013). Efficiency of sewage treatment with septic tanks followed by beds grown with different means of support. Ambi-Agua, 10, 4136.

    Google Scholar 

  • CONAMA (Conselho Nacional Do Meio Ambiente) (2005) Resolution number 357 of March 17, 2005. http://www.mma.gov.br/port/conama/res/res05/res35705.pdf.

  • CONAMA (Conselho Nacional Do Meio Ambiente) (2011) Resolution number 430 of May 13, 2011. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646.

  • da Silva, L. J., Lopes, L. G., & Amaral, L. A. (2016). Quality of water of public supply of the municipality of Jaboticabal,SP. Engenharia Sanitaria e Ambiental. https://doi.org/10.1590/S1413-41522016121151.

  • de Almeida, R. A., de Oliveira, L. F. C., & Kliemann, H. J. (2007). Eficiência de espécies vegetais na purificação de esgoto sanitário. Revista Pesquisa Agropecuária Tropical. https://doi.org/10.5216/pat.v37i1.1839.

  • de Freitas Bueno, R., Faria, J. K., Uliana, D. P., & Liduino, V. S. (2020). Simultaneous removal of organic matter and nitrogen compounds from landfill leachate by aerobic granular sludge. Environmental Technology. https://doi.org/10.1080/09593330.2020.1740798.

  • de Oliveira, J. P., Antunes, P. W. P., Pinotti, L. M., & Cassini, S. T. A. (2014). Physicochemical characterization of oily residues from sanitation and extracted oils and grease for conversion to biofuels. Revista Química Nova. https://doi.org/10.5935/0100-4042.20140094.

  • de S Santos, R., & Mohr, T. (2013). Healthy and water quality: microbiological and physicochemical analysis in groundwater. Revista Contexto & Saúde, 24(13), 46–53.

    Google Scholar 

  • Decezaro, S. T., Wolff, D. B., Araújo, R. K., Faccenda, H. B., Perondi, T., & Sezerino, P. H. (2018). Vertical flow constructed wetland planted with Heliconia psittacorum used as decentralized post-treatment of anaerobic effluent in Southern Brazil. Journal of Environmental Science and Health. https://doi.org/10.1080/10934529.2018.1530106.

  • Drumond, S. N., da Santiago, A. F., Moreira, M., da Silva Lanna, M. C., & Roeser, H. M. P. (2018). Molecular identification of Escherichia coli diarrhea in the Hydrographic Basin of Xopotó River in the region of Alto Rio Doce. Engenharia Sanitaria e Ambiental. https://doi.org/10.1590/s1413-41522018165696.

  • Emmanuel, E., Pierre, M. G., & Perrodin, Y. (2009). Perrodin groundwater contamination by microbiological and chemical substances released from hospital wastewater: health risk assessment for drinking water consumers. Environment International, 10, 1016.

    Google Scholar 

  • Estevam, M., Appoloni, C. R., Malvezi, A. D., Tatakihara, V. L. H., Panis, C., Cecchini, R., Rizzo, L. V., & Pinge-Filho, P. (2012). Trypanosoma cruzi: in vivo evaluation of iron in skin employing X-ray fluorescence (XRF) in mouse strains that differ in their susceptibility to infection. FEMS Immunology and Medical Microbiology. https://doi.org/10.1111/j.1574-695X.2011.00917.x.

  • França, J. B. A., Moraes, T. V., Vaz, D. C., Ferreira, A. A., & Soares, F. A. L. (2014). Domestic effluent treatment with aquatic macrophytes to reuse in fertigation. Irriga, 10, 15809.

    Google Scholar 

  • FUNASA (Fundação Nacional de Saúde) (2014) Water quality control manual for technicians working in WTS. Resource document. Fundação Nacional de Saúde. https://edisciplinas.usp.br/pluginfile.php/4321633/mod_resource/content/1/Manual%20cont_quali_agua_tecnicos_trab_emetas.pdf. Accessed 17 June 2019.

  • Gomes, L. A., Al-Malack, M. H., & Anderson, G. K. (1996). Treatment of anaerobic expanded bed reactor effluent using crossflow microfiltration. Journal of Environmental Science and Health. https://doi.org/10.1080/10934529609376515.

  • Guerra, R. (2001). Ecotoxicological and chemical evaluation of phenolic compounds in industrial effluents. Chemosphere. https://doi.org/10.1016/S0045-6535(00)00562-2.

  • Halder, J. N., & Islam, M. N. (2015). Water pollution and its impact on the human health. Journal of Environment and Human. https://doi.org/10.15764/EH.2015.01005.

  • Haseena, M., Malik, M. F., Javed, A., Arshad, S., Asif, N., Zulfiqar, S., & Hanif, J. (2017). Water pollution and human health. Environ Risk Assess Remediat, 10, 1146.

    Google Scholar 

  • IBGE (Instituto Brasileiro de Geografia e Estatística). (2018). Profile of Brazilian municipalities 2017. Brazilian Institute of Statistical Geography of Rio de Janeiro: IBGE. https://agenciadenoticias.ibge.gov.br/media/com_mediaibge/arquivos/496bb4fbf305cca806aaa167aa4f6dc8.pdf.

  • IBGE (Instituto Brasileiro de Geografia Estatística). (2013). Profile of Brazilian municipalities. Institute of Statistical Geography of Rio de Janeiro: IBGE. https://agenciadenoticias.ibge.gov.br/media/com_mediaibge/arquivos/496bb4fbf305cca806aaa167aa4f6dc8.pdf.

  • Ibrahim, S., El-Liethy, M. A., Elwakeel, K. Z., Hasan, M. A. E.-G., Al Zanaty, A. M., & Kamel, M. M. (2020). Role of identified bacterial consortium in treatment of Quhafa wastewater treatment plant influent in Fayuom, Egypt. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-020-8105-9.

  • IPEA (Instituto de Pesquisa Econômica Aplicada) (2008) Development challenges. Resource document. Intitute of Applied Economic Research. http://desafios.ipea.gov.br/images/stories/PDFs/desafios041_completa.pdf. Accessed 2 Apr 2020.

  • Jiries, A. G., Al Nasir, F. M., & Beese, F. (2002). Pesticide and heavy metals residue in wastewater, soil and plants in wastewater disposal site near Al-Lajoun Valley, Karak / Jordan. Water, Air, and Soil Pollution. https://doi.org/10.1023/A:1012923832506.

  • Kamble, S. M. (2014). Water pollution and public health issues in Kolhapur city in Maharashtra. International Journal of Scientific and Research Publications. https://doi.org/10.4066/2529-8046.100020.

  • Kitanou, S., Tahri, M., Bachiri, B., Mahi, M., Hafsi, M., Taky, M., & Elmidaoui, A. (2018). Comparative study of membrane bioreactor (MBR) and activated sludge processes in the treatment of Moroccan domestic wastewater. Water Science and Technology. https://doi.org/10.2166/wst.2018.384.

  • Kruszelnicka, I., Ginter-Kramarczyk, D., Wyrwas, B., & Idkowiak, J. (2019). Evaluation of surfactant removal efficiency in selected domestic wastewater treatment plants in Poland. Journal of Environmental Health Science and Engineering. https://doi.org/10.1007/s40201-019-00387-6.

  • Kumakli, H., Duncan, A., McDaniel, K., Mehari, T. F., Stephenson, J., Maple, L., Crawford, Z., Macemore, C. L., Babyak, C. M., & Fakayode, S. O. (2017). Environmental biomonitoring of essential and toxic elements in human 1 scalp hair using accelerated microwave-assisted sample digestion and inductively coupled plasma optical emission spectroscopy. Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.02.032.

  • Loures, A. P. S., Soares, A. A., de Matos, A. T., Cecon, P. R., & Pereira, O. G. (2006). Remoção de fósforo em sistema de tratamento de esgoto doméstico, por escoamento superficial. Revista Brasileira de Engenharia Agrícola e Ambiental. https://doi.org/10.1590/S1415-43662006000300025.

  • Marçal, D. A., & Silva, C. E. (2017). Evaluation of the impact of the effluent from the STS- Pirajá sewage treatment plant on Parnaíba River, Teresina (PI). Engenharia Sanitaria e Ambiental. https://doi.org/10.1590/s1413-41522017148242.

  • Melquiades, F. L., Parreira, P. S., Yabe, M. J., Corazza, M. Z., Funfas, R., & Appoloni, C. R. (2007). Factorial design for Fe, Cu, Zn, Se and Pb preconcentration optimization with APDC and analysis with a portable X-ray fluorescence system. Talanta. https://doi.org/10.1016/j.talanta.2007.03.004.

  • Melquiades, F. L., Parreira, P. S., Appoloni, C. R., Silva, W. D., & Lopes, F. (2011). Quantification of metals in river water using a portable EDXRF system. Applied Radiation and Isotopes. https://doi.org/10.1016/j.apradiso.2010.09.021.

  • Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., & McLaughlin, J. L. (1982). Brine shrimp: a convenient general bioassay for active plant constituents. Journal of Medical Plant Research. https://doi.org/10.1055/s-2007-971236.

  • Montefrio, M. J., Xinwen, T., & Obbard, J. P. (2010). Recovery and pre-treatment of fats, oil and grease from grease interceptors for biodiesel production. Applied Energy. https://doi.org/10.1016/j.apenergy.2010.04.011.

  • Nagalli, A., & Nemes, P. D. (2009). Stadie of water quality of receptor body of industrial and domestic liquid effluents. Revista Acadêmica de Ciências Agrárias, 10, 7213.

    Google Scholar 

  • Nascimento, V. F. S., & Araújo, M. F. F. (2013). Pathogenic bacteria occurrences opportunists in a semi-arid reservoir in the Rio Grande do Norte, Brasil. Revista de Ciências Ambientais, 10, 18316/1080.

    Google Scholar 

  • Owa, F. D. (2013). Water pollution: sources, effects, control and management. Mediterranean Journal of Social Sciences. https://doi.org/10.5901/mjss.2013.v4n8p65.

  • Parron, L. M., de Freitas Muniz, D. H., & Pereira, C. M. (2011). Manual of sampling procedures and physicochemical analysis of water. Resource Document. Embrapa Forests. https://core.ac.uk/download/pdf/15440973.pdf. Accessed 2 Apr 2020.

  • Pimentel, M. F., Silva Júnior, F. C. G., Santaella, S. T., & Lotufo, L. V. C. (2011). Use of Artemia sp. as a test organism for assessing wastewater toxicity from cashew processing before and after treatment in an experimental biological reactor. Journal of the Brazilian Society of Ecotoxicology. https://doi.org/10.5132/jbse.2011.01.003.

  • Piratoba, A. R. A., Ribeiro, H. M. C., Morales, G. P., & Gonçalves, W. G. (2016). Characterization of water quality parameters in the port area of Barcarena, PA, Brasil. Ambiente & Água. https://doi.org/10.4136/ambi-agua.1910.

  • Prica, M., Adamovic, S., Dalmacija, B., Rajic, L., Trickovic, J., Rapajic, S., & Becelic-Tomin, M. (2015) The electrocoagulation/flotation study: the removal of heavy metals from the waste fountain solution. Process Safety and Environment Protection,https://doi.org/10.1016/j.psep.2014.07.002.

  • Rajabi, S., Ramazani, A., Hamidi, M., & Naji, R. (2015). Artemia salina as a model organism in toxicity assessment of nanoparticles. Daru Journal of Pharmaceutical Sciences. https://doi.org/10.1186/s40199-015-0105-x.

  • Rasool, T., Rehman, A., Naz, I., Ullah, R., & Ahmed, S. (2017). Efficiency of locally designed pilot scale trickling biofilter (TBF) system in natural environment for the treatment of domestic wastewater. Environmental Technology. https://doi.org/10.1080/09593330.2017.1329346.

  • Rehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2017). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry. https://doi.org/10.1002/jcb.26234.

  • Reis, M. M., Tuffi Santos, L. D., da Silva, A. J., de Pinho, G. P., & Montes, W. G. (2019). Metal contamination of water and sediments of the Vieira River, Montes Claros, Brazil. Archives of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00244-019-00666-1.

  • Santa Catarina (2009) Lei n° 14.675, de 13 de abril de 2009. Institute the State Environmental Code and establishes other measures. http://leis.alesc.sc.gov.br/html/2009/14675_2009_lei.html.

  • Santos, A. C. (1997). Notions of hydrochemistry. In: Hidrogeologia: Concepts and applied. Fortaleza: CPRM /LABHID.

    Google Scholar 

  • Schwantes, D., Gonçalves, A. C., da Paz Schiller, A., Manfrin, J., Campagnolo, M. A., & Somavilla, E. (2019). Pistia stratiotes in the phytoremediation and post-treatment of domestic sewage. International Journal of Phytoremediation. https://doi.org/10.1080/15226514.2018.1556591.

  • Silva, S. A., & Oliveira, R. O. (2001). Manual of physical chemical analysis of water supply and wastewater. Campina Grande, Paraíba: ABES.

    Google Scholar 

  • Silva, W. T. L., Novaes, A. P., Kuroki, V., Martelli, L. F. A., & Magnoni, J. L. (2012). Physicochemical evaluation of effluent generated in anaerobic biodigester for efficiency evaluation and application as an agricultural fertilizer. Quim Nova. https://doi.org/10.1590/S0100-40422012000100007.

  • Silva, M. C. A., Monteggia, L. O., Miranda, L. A. S., & Thewes, M. R. (2015). Evaluation of the viability of using coliphages as indicators of fecal pollution: their relationship with physical and chemical parameters and bacterial indicators. Engenharia Sanitária e Ambiental. https://doi.org/10.1590/S1413-41522015020040132584.

  • Sun, H., Shi, B., Yang, F., & Wang, D. (2017). Effects of sulfate on heavy metal release from iron corrosion scales in drinking water distribution system. Water Research. https://doi.org/10.1016/j.watres.2017.02.021.

  • Svensson, B. M., Mathiasson, L., Martensson, L., & Bergstrom, S. (2005). Artemia salina as test organism for assessment of acute toxicity of leachate water from landfills. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-005-6029-z.

  • Tucci, C. M. (2014). The trouble is the lack of sewage. Revista Radis, 147, 16–17.

    Google Scholar 

  • Ullah, S., Javed, M. W., Shafique, M., et al. (2014). An integrated approach for quality assessment of drinking water using GIS: a case study of Lower Dir. Journal of Himalayan Earth Sciences, 47(2), 163–174.

    CAS  Google Scholar 

  • Valente, J. P. S., Padilha, P. M., & Silva, A. M. M. (1997). Dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD) with parameters of pollution in brook Lavapés/Botucatu – SP, Eclet. Química. https://doi.org/10.1590/S0100-46701997000100005.

  • Vassalle, L., Díez-Montero, R., Machado, A. T. R., Moreira, C., Ferrer, I., Filho, C. R. M., et al. (2019). Upflow anaerobic sludge blanket in microalgae-based sewage treatment: co-digestion for improving biogas production. Bioresource Technology. https://doi.org/10.1016/j.biortech.2019.122677.

  • Word Health Oganization (WHO). (2011). Guidelines for drinking-water quality. Library Cataloguing-in-Publication Data. http://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdf. Accessed 7 Aug. 2015.

Download references

Acknowledgments

The authors are grateful to Cleomar José Mantelli, Mayor of Palma Sola, Santa Catarina, Douglas Fernando Ribeiro, Director of Environment and Civil Defense, and Waldir Rossetti, System Operator, for their excellent technical assistance and allow our work in the Human Waste Station Treatment in Palma Sola, Santa Catarina, Brazil.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed for the conception and study delimitation. Preparation of the manuscript, collection, and data analysis were performed by Gisele Arruda, Ketlyn Lucyani Olenka, Carolina Panis, Adriano Martin Felis Aranome, Marcelo Estevam, Fábio Luiz Melquiades, Ana Clara Daros Massarollo, Larissa Salla, and Franciele Aní Caovilla Follador. All authors read and approved the final manuscript version.

Corresponding author

Correspondence to Larissa Salla.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salla, L., Arruda, G., Massarollo, A.C.D. et al. Electro-oxycoagulation Efficiency for the Treatment of Domestic Effluents. Water Air Soil Pollut 231, 462 (2020). https://doi.org/10.1007/s11270-020-04831-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04831-4

Keywords

Navigation