Skip to main content

Advertisement

Log in

A New Simple and Fast Method for Determination of Cobalt in Vitamin B12 and Water Samples Using Dispersive Liquid-Liquid Microextraction and Digital Image Analysis

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this work, a simple and fast method for the determination of cobalt in vitamin B12 and water samples was developed. The procedure is based on the preconcentration of the element using dispersive liquid-liquid microextraction (DLLME) and subsequent detection by digital image colorimetry. DLLME was performed with trichloroethylene (extraction solvent) and ethanol (dispersive solvent). The element was extracted in the form of its complex with 2-(2-thiazolylazo)-p-cresol (TAC). The optimal working conditions were obtained through univariate optimization. The variables studied were pH, the volume of extraction solvent, and the volume of dispersive solvent. Under optimal conditions, the method presented a limit of detection of 0.9 μg L−1 and precision (relative standard deviation) of 4.0%, for 25.0 μg L−1 cobalt solutions. The procedure was applied to the determination of cobalt in vitamin B12 and water samples. The method presents a simple, fast, and low-cost procedure, presenting itself as an excellent alternative to the determination of cobalt in the samples analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmadi, S., Mani-Varnosfaderani, A., & Habibi, B. (2019). Characterization of binary edible oil blends using color histograms and pattern recognition techniques. Analytical and Bioanalytical Chemistry Research, 6, 111–124.

    Google Scholar 

  • Aydin, F., Yilmaz, E., & Soylak, M. (2015). Supramolecular solvent-based microextraction method for cobalt traces in food samples with optimization Plackett–Burman and central composite experimental design. RSC Advances, 5, 94879–94886.

    Article  CAS  Google Scholar 

  • Baghban, N., Shabani, A. M. H., Dadfarnia, S., & Jafari, A. A. (2009). Flame atomic absorption spectrometric determination of trace amounts of cobalt after cloud point extraction as 2-[(2-mercaptophenylimino) methyl] phenol complex. Journal of the Brazilian Chemical Society, 20, 832–838.

    Article  CAS  Google Scholar 

  • Bahar, S., & Babamiri, B. (2015). Preconcentration and determination of low amounts of cobalt in black tea, paprika and marjoram using dispersive liquid–liquid microextraction and flame atomic absorption spectrometry. Journal of the Iranian Chemical Society, 12, 51–56.

    Article  CAS  Google Scholar 

  • Barreto, J. A., De Assis, R. D. S., Cassella, R. J., & Lemos, V. A. (2019). A novel strategy based on in-syringe dispersive liquid-liquid microextraction for the determination of nickel in chocolate samples. Talanta, 193, 23–28.

    Article  CAS  Google Scholar 

  • Barros, J. A., Oliveira, F. M. D., Santos, G. D. O., Wisniewski, C., & Luccas, P. O. (2017). Digital image analysis for the colorimetric determination of aluminum, total iron, nitrite and soluble phosphorus in waters. Analytical Letters, 50, 414–430.

    Article  CAS  Google Scholar 

  • Beikzadeh, E., & Sarrafi, A. H. (2017). Determination of trace levels of cobalt ion in different real samples using dispersive liquid–liquid microextraction followed by flame atomic absorption spectrometry. Journal of Food Measurement and Characterization, 11, 994–1002.

    Article  Google Scholar 

  • Bhattacharya, P. T., Misra, S. R., & Hussain, M. (2016). Nutritional aspects of essential trace elements in oral health and disease: an extensive review. Scientifica, 2016, 1–12.

    Article  Google Scholar 

  • Camel, V. (2003). Solid phase extraction of trace elements. Spectrochimica Acta Part B, Atomic Spectroscopy, 58, 1177–1233.

    Article  Google Scholar 

  • Capitan-Vallvey, L. F., Lopez-Ruiz, N., Martinez-Olmos, A., Erenas, M. M., & Palma, A. J. (2015). Recent developments in computer vision-based analytical chemistry: a tutorial review. Analytica Chimica Acta, 899, 23–56.

    Article  CAS  Google Scholar 

  • Chaiyamate, P., Seebunrueng, K., & Srijaranai, S. (2018). Vortex-assisted low density solvent and surfactant based dispersive liquid–liquid microextraction for sensitive spectrophotometric determination of cobalt. RSC Advances, 8, 7243–7251.

    Article  CAS  Google Scholar 

  • Choodum, A., Sriprom, W., & Wongniramaikul, W. (2019). Portable and selective colorimetric film and digital image colorimetry for detection of iron. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 208, 40–47.

    Article  CAS  Google Scholar 

  • de Almeida, O. N., Luzardo, F. H. M., Amorim, F. A. C., Velasco, F. G., & González, L. N. (2018). Use of fiberglass support in the application of dried-spot technique with dispersion liquid-liquid microextraction for the determination of Co, Cr, Cu, Ni and Pb by Energy Dispersive X-Ray Fluorescence Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 150, 92–98.

    Article  Google Scholar 

  • Eisapour, M., Shemirani, F., Majidi, B., & Baghdadi, M. (2012). Ultrasound assisted cold-induced aggregation: an improved method for trace determination of volatile phenol. Microchimica Acta, 177, 349–355.

    Article  CAS  Google Scholar 

  • Ferreira, S. L., & de Brito, C. F. (1999). Separation and preconcentration of cobalt after sorption onto Amberlite XAD-2 loaded with 2-(2-thiazolylazo)-p-cresol. Analytical Sciences, 15, 189–191.

    Article  CAS  Google Scholar 

  • Fındıkoğlu, M. S., Fırat, M., Chormey, D. S., Turak, F., Şahin, Ç., & Bakırdere, S. (2018). Determination of cadmium in tap, sea and waste water samples by vortex-assisted dispersive liquid-liquid-solidified floating organic drop microextraction and slotted quartz tube FAAS after complexation with a imidazole based ligand. Water, Air, & Soil Pollution, 229, 37.

    Article  Google Scholar 

  • Isshiki, K., & Nakayama, E. (1987). Selective concentration of cobalt in seawater by complexation with various ligands and sorption on macroporous resins. Analytical Chemistry, 59, 291–295.

    Article  CAS  Google Scholar 

  • Jalbani, N., Alosmanov, R., & Soylak, M. (2014). Use of modified diethylamine phosphorus-containing polymer for solid phase extraction of cobalt and lead in fruit samples employing flame atomic absorption spectrometry. Atomic Spectroscopy, 35, 163–167.

    CAS  Google Scholar 

  • Lemos, V. A., dos Passos, A. S., Novaes, G. D. S., Santana, D. D. A., de Carvalho, A. L., & da Silva, D. G. (2007). Determination of cobalt, copper and nickel in food samples after pre-concentration on a new pyrocatechol-functionalized polyurethane foam sorbent. Reactive & Functional Polymers, 67, 573–581.

    Article  CAS  Google Scholar 

  • Li, W., Zhang, R., Wang, H., Jiang, W., Wang, L., Li, H., Wu, T., & Du, Y. (2016). Digital image colorimetry coupled with a multichannel membrane filtration-enrichment technique to detect low concentration dyes. Analytical Methods, 8, 2887–2894.

    Article  CAS  Google Scholar 

  • Lima, G. F., Ohara, M. O., Clausen, D. N., Nascimento, D. R., Ribeiro, E. S., Segatelli, M. G., Bezerra, M. A., & Tarley, C. R. (2012). Flow injection on-line minicolumn preconcentration and determination of trace copper ions using an alumina/titanium oxide grafted silica matrix and FAAS. Microchimica Acta, 178, 61–70.

    Article  CAS  Google Scholar 

  • Lima, M. J., Nascimento, C. F., & Rocha, F. R. (2017). Feasible photometric measurements in liquid–liquid extraction by exploiting smartphone-based digital images. Analytical Methods, 9, 2220–2225.

    Article  CAS  Google Scholar 

  • Mahato, K., & Chandra, P. (2019). Paper-based miniaturized immunosensor for naked eye ALP detection based on digital image colorimetry integrated with smartphone. Biosensors and Bioelectronics, 128, 9–16.

    Article  CAS  Google Scholar 

  • Neto, J. H. S., Porto, I. S., Schneider, M. P., dos Santos, A. M., Gomes, A. A., & Ferreira, S. L. (2019). Speciation analysis based on digital image colorimetry: iron (II/III) in white wine. Talanta, 194, 86–89.

    Article  Google Scholar 

  • Rahmatabadi, D., Shahmirzaloo, A., Hashemi, R., & Farahani, M. (2019). Using digital image correlation for characterizing the elastic and plastic parameters of ultrafine-grained Al 1050 strips fabricated via accumulative roll bonding process. Materials Research Express, 6, 086542.

    Article  CAS  Google Scholar 

  • Simonsen, L. O., Harbak, H., & Bennekou, P. (2012). Cobalt metabolism and toxicology—a brief update. Science of the Total Environment, 432, 210–215.

    Article  CAS  Google Scholar 

  • Soares, S., Lima, M. J., & Rocha, F. R. (2017). A spot test for iodine value determination in biodiesel based on digital images exploiting a smartphone. Microchemical Journal, 133, 195–199.

    Article  CAS  Google Scholar 

  • Sousa, É. M. L., Dias, R. A. S., Sousa, E. R., Brito, N. M., Freitas, A. S., Silva, G. S., Silva, L. K., Lima, D. L. D., Esteves, V. I., & Silva, G. S. (2020). Determination of three estrogens in environmental water samples using dispersive liquid-liquid microextraction by high-performance liquid chromatography and fluorescence detector. Water, Air, & Soil Pollution, 231, 172.

    Article  CAS  Google Scholar 

  • Soylak, M., Kaya, B., & Tuzen, M. (2007). Copper (II)-8-hydroxquinoline coprecipitation system for preconcentration and separation of cobalt (II) and manganese (II) in real samples. Journal of Hazardous Materials, 147, 832–837.

    Article  CAS  Google Scholar 

  • Tekin, Z., Erarpat, S., Şahin, A., Selali Chormey, D., & Bakırdere, S. (2019). Determination of vitamin B12 and cobalt in egg yolk using vortex assisted switchable solvent based liquid phase microextraction prior to slotted quartz tube flame atomic absorption spectrometry. Food Chemistry, 286, 500–505.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The authors also received financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (311419/2018-6) and the Fundação de Amparo à Pesquisa do Estado da Bahia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valfredo Azevedo Lemos.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemos, V.A., Junior, I.V.S., Santos, L.B. et al. A New Simple and Fast Method for Determination of Cobalt in Vitamin B12 and Water Samples Using Dispersive Liquid-Liquid Microextraction and Digital Image Analysis. Water Air Soil Pollut 231, 334 (2020). https://doi.org/10.1007/s11270-020-04680-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04680-1

Keywords

Navigation