Phycoremediation of Sewage-Contaminated Lake Water Using Microalgae–Bacteria Co-Culture

Abstract

The uncontrolled discharge of organic and inorganic substances causes overenrichment of water bodies by nutrients resulting in eutrophication which disturbs the flora and fauna balance of the lake ecosystem affecting its water quality. Therefore, it is necessary to remove excess nutrients from contaminated lake water. The present investigation was attempted to reduce high organic content and excess nutrients from the sewage-contaminated lake water using microalgae and bacteria in the form of activated sludge. Comparative analyses in three different setups state that maximum efficient removal of nutrients and organic matter (chemical oxygen demand [COD]) was achieved by the symbiotic co-culture than stand-alone cultures of microalgae and activated sludge. The highest removal of nitrates (NO3) and phosphates (PO4) was 93% and 99% with maximum removal of COD by 73% in the case of co-culture. The maximum biomass obtained was 7.8 g/L in the co-culture system. Fourier transform infrared spectroscopy confirms the presence of fatty acids and lipids in the microalgae biomass. The effect of cultivation time and pH was studied in optimization for simultaneous biomass production, organic matter reduction and for removal of nutrients using central composite design (CCD) under response surface methodology (RSM). The optimized results were in good agreement with the experimental results.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. American Public Health Association (APHA). (2005). Standard methods for the examination of water and wastewater (21st ed.1220p). Washington DC: American Public Health Association.

    Google Scholar 

  2. Angelaalincy, M., Senthilkumar, N., Karpagam, R., Kumar, G. G., Ashokkumar, B., & Varalakshmi, P. (2017). Enhanced extracellular polysaccharide production and self-sustainable electricity generation for PAMFCs by Scenedesmus sp. SB1. ACS omega, 2(7), 3754–3765.

    CAS  Article  Google Scholar 

  3. Barbera, E., Teymouri, A., Bertucco, A., Stuart, B. J., & Kumar, S. (2017). Recycling minerals in microalgae cultivation through a combined flash hydrolysis–precipitation process. ACS Sustainable Chemistry & Engineering, 5(1), 929–935.

    CAS  Article  Google Scholar 

  4. Beck, W. S., & Hall, E. K. (2018). Confounding factors in algal phosphorus limitation experiments. PLoS One, 13(10), e0205684.

    Article  CAS  Google Scholar 

  5. Bhateria, R., & Jain, D. (2016). Water quality assessment of lake water: a review. Sustainable Water Resources Management, 2(2), 161–173.

    Article  Google Scholar 

  6. Bunce, J. T., Ndam, E., Ofiteru, I. D., Moore, A., & Graham, D. W. (2018). A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Frontiers in Environmental Science, 6, 8.

    Article  Google Scholar 

  7. Chiranjeevi, P., & Venkata Mohan, S. (2016). Optimizing the critical factors for lipid productivity during stress phased heterotrophic microalgae cultivation. Frontiers in Energy Research, 4, 26.

    Article  Google Scholar 

  8. Delgadillo-Mirquez, L., Lopes, F., Taidi, B., & Pareau, D. (2016). Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnology Reports, 11, 18–26.

    Article  Google Scholar 

  9. Dong, T., et al. (2016). Combined algal processing: a novel integrated biorefinery process to produce algal biofuels and bioproducts. Algal Research, 19, 316–323.

    Article  Google Scholar 

  10. Emparan, Q., Harun, R., & Danquah, M. K. (2019). Role of phycoremediation for nutrient removal from wastewaters: a review. Applied Ecology and Environmental Research, 17(1), 889–915.

    Article  Google Scholar 

  11. Fuentes, J., Garbayo, I., Cuaresma, M., Montero, Z., González-del-Valle, M., & Vílchez, C. (2016). Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Marine Drugs, 14(5), 100.

    Article  CAS  Google Scholar 

  12. Guccione, A., Biondi, N., Sampietro, G., Rodolfi, L., Bassi, N., & Tredici, M. R. (2014). Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a green wall panel photobioreactor. Biotechnology for Biofuels, 7(1), 84.

    Article  CAS  Google Scholar 

  13. Higgins, B. T., Gennity, I., Fitzgerald, P. S., Ceballos, S. J., Fiehn, O., & VanderGheynst, J. S. (2018). Algal–bacterial synergy in treatment of winery wastewater. npj Clean Water, 1(1), 6.

    CAS  Article  Google Scholar 

  14. Kiros, A., Gholap, A. V., & Gigante, G. E. (2013). Fourier transform infrared spectroscopic characterization of clay minerals from rocks of Lalibela churches, Ethiopia. International Journal of Physical Sciences, 8(3), 109–119.

    Article  CAS  Google Scholar 

  15. Kotasthane, T. (2017). Potential of microalgae for sustainable biofuel production. J Marine Science: Research and Development, 2155–9910. https://doi.org/10.4172/2155-9910.1000223.

  16. Krishna, S. V., Kumar, P. K., Verma, K., Bhagawan, D., Himabindu, V., Narasu, M. L., & Singh, R. (2019). Enhancement of biohydrogen production from distillery spent wash effluent using electrocoagulation process. Energy, Ecology and Environment, 4(4), 160–165.

    Article  Google Scholar 

  17. Krohn-Molt, I., Alawi, M., Förstner, K. U., Wiegandt, A., Burkhardt, L., Indenbirken, D., & Streit, W. R. (2017). Insights into microalga and bacteria interactions of selected phycosphere biofilms using metagenomic, transcriptomic, and proteomic approaches. Frontiers in Microbiology, 8, 1941.

    Article  Google Scholar 

  18. Kumar, P. K., Krishna, S. V., Verma, K., Pooja, K., Bhagawan, D., & Himabindu, V. (2018a). Phycoremediation of sewage wastewater and industrial flue gases for biomass generation from microalgae. South African Journal of Chemical Engineering, 25, 133–146.

    Article  Google Scholar 

  19. Kumar, P. K., Krishna, S. V., Verma, K., Pooja, K., Bhagawan, D., Srilatha, K., & Himabindu, V. (2018b). Bio oil production from microalgae via hydrothermal liquefaction technology under subcritical water conditions. Journal of Microbiological Methods, 153, 108–117.

    Article  CAS  Google Scholar 

  20. Kumar, P. K., Krishna, S. V., Naidu, S. S., Verma, K., Bhagawan, D., & Himabindu, V. (2019). Biomass production from microalgae Chlorella grown in sewage, kitchen wastewater using industrial CO2 emissions: comparative study. Carbon Resources Conversion.

  21. Kwon, G., Nam, J. H., Kim, D. M., Song, C., Jahng, D., Kwon, G., et al. (2019). Growth and nutrient removal of Chlorella vulgaris in ammonia-reduced raw and anaerobically-digested piggery wastewaters. Environmental Engineering Research, 25(2), 135–146.

    Article  Google Scholar 

  22. Lian, J., Wijffels, R. H., Smidt, H., & Sipkema, D. (2018). The effect of the algal microbiome on industrial production of microalgae. Microbial Biotechnology, 11(5), 806–818.

    Article  Google Scholar 

  23. Liang, Z., Liu, Y., Ge, F., Xu, Y., Tao, N., Peng, F., & Wong, M. (2013). Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis. Chemosphere, 92(10), 1383–1389.

    CAS  Article  Google Scholar 

  24. Mayers, J. J., Flynn, K. J., & Shields, R. J. (2013). Rapid determination of bulk microalgal biochemical composition by Fourier-transform infrared spectroscopy. Bioresource Technology, 148, 215–220. https://doi.org/10.1016/j.biortech.2013.08.133.

    CAS  Article  Google Scholar 

  25. Molazadeh, M., Ahmadzadeh, H., Pourianfar, H. R., Lyon, S., & Rampelotto, P. H. (2019). The use of microalgae for coupling wastewater treatment with CO2 biofixation. Frontiers in Bioengineering and Biotechnology, 7.

  26. Mujtaba, G., Rizwan, M., & Lee, K. (2015). Simultaneous removal of inorganic nutrients and organic carbon by symbiotic co-culture of Chlorella vulgaris and Pseudomonas putida. Biotechnology and Bioprocess Engineering, 20(6), 1114–1122.

    CAS  Article  Google Scholar 

  27. Mujtaba, G., Rizwan, M., Kim, G., & Lee, K. (2018). Removal of nutrients and COD through co-culturing activated sludge and immobilized Chlorella vulgaris. Chemical Engineering Journal, 343, 155–162.

    CAS  Article  Google Scholar 

  28. Oljira, T., Muleta, D., & Jida, M. (2018). Potential applications of some indigenous bacteria isolated from polluted areas in the treatment of brewery effluents. Biotechnology Research International 2018.

  29. Onumaegbu, C., Alaswad, A., Rodriguez, C., & Olabi, A. (2018). Optimization of pre-treatment process parameters to generate biodiesel from microalga. Energies, 11(4), 806.

    Article  CAS  Google Scholar 

  30. Park, S., Kim, J., Park, Y., Son, S., Cho, S., Kim, C., & Lee, T. (2017). Comparison of batch cultivation strategies for cost-effective biomass production of Micractinium inermum NLP-F014 using a blended wastewater medium. Bioresource Technology, 234, 432–438.

    CAS  Article  Google Scholar 

  31. Patel, A., Antonopoulou, I., Enman, J., Rova, U., Christakopoulos, P., & Matsakas, L. (2019). Lipids detection and quantification in oleaginous microorganisms: an overview of the current state of the art. BMC Chemical Engineering, 1(1), 13.

    Article  Google Scholar 

  32. Porwal, H. J., Mane, A. V., & Velhal, S. G. (2015). Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge. Water Resources and Industry, 9, 1–15.

    Article  Google Scholar 

  33. Prabaningtyas, S., Witjoro, A., Suarsini, E., Aridowi, D., Safitri, Y., & Aribah, D. (2019). The influence of dominant bacteria from various lakes of East Java, Indonesia on Chlorella sp. culture. In IOP Conference Series: Earth and Environmental Science (Vol. 276, no. 1, p. 012045). IOP Publishing.

  34. Ramanan, R., Kim, B. H., Cho, D. H., Oh, H. M., & Kim, H. S. (2016). Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnology Advances, 34(1), 14–29.

    CAS  Article  Google Scholar 

  35. Ramos-Ibarra, J. R., Rubio-Ramírez, T. E., Mondragón-Cortez, P., Torres-Velázquez, J. R., & Choix, F. J. (2019). Azospirillum brasilense-microalga interaction increases growth and accumulation of cell compounds in Chlorella vulgaris and Tetradesmus obliquus cultured under nitrogen stress. Journal of Applied Phycology, 1–13.

  36. Saranga, V. K., Kumar, P. K., Verma, K., Bhagawan, D., Himabindu, V., & Narasu, M. L. (2019). Effect of biohythane production from distillery spent wash with addition of landfill leachate and sewage wastewater. Applied Biochemistry and Biotechnology, 1–14. ISSN 0273-2289. https://doi.org/10.1007/s/2010-019-03087-x.

  37. Schumacher, G., Blume, T., & Sekoulov, I. (2003). Bacteria reduction and nutrient removal in small wastewater treatment plants by an algal biofilm. Water Science and Technology, 47(11), 195–202.

    CAS  Article  Google Scholar 

  38. Sinha, R., Singh, A., & Mathur, S. (2016). Multiobjective optimization for minimum residual fluoride and specific energy in electrocoagulation process. Desalination and Water Treatment, 57(9), 4194–4204.

    CAS  Article  Google Scholar 

  39. Sudhakar, K., & Premalatha, M. (2015). Characterization of micro algal biomass through FTIR/TGA/CHN analysis: application to Scenedesmus sp. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(21), 2330–2337.

    Article  CAS  Google Scholar 

  40. Trivedi, T., Jain, D., Mulla, N. S., Mamatha, S. S., Damare, S. R., Sreepada, R. A., & Gupta, V. (2019). Improvement in biomass, lipid production and biodiesel properties of a euryhaline Chlorella vulgaris NIOCCV on mixotrophic cultivation in wastewater from a fish processing plant. Renewable energy, 139, 326–335.

  41. Verma, K., Gupta, D., & Gupta, A. B. (2016). Optimization of ozone disinfection and its effect on trihalomethanes. Journal of Environmental Chemical Engineering, 4(3), 3021–3032. https://doi.org/10.1016/j.jece.2016.06.017 2016.

    CAS  Article  Google Scholar 

  42. Verma, K., Gupta, A. B., & Singh, A. (2017). Optimization of chlorination process and analysis of THMs to mitigate ill effects of sewage irrigation. Journal of Environmental Chemical Engineering, 5(4), 3540–3549. https://doi.org/10.1016/j.jece.2017.07.022 2017.

    CAS  Article  Google Scholar 

  43. Wan, J., Gu, J., Zhao, Q., & Liu, Y. (2016). COD capture: a feasible option towards energy self-sufficient domestic wastewater treatment. Scientific Reports, 6, 25054.

    CAS  Article  Google Scholar 

  44. Whitton, R., Le Mével, A., Pidou, M., Ometto, F., Villa, R., & Jefferson, B. (2016). Influence of microalgal N and P composition on wastewater nutrient remediation. Water Research, 91, 371–378.

    CAS  Article  Google Scholar 

  45. Yao, S., Lyu, S., An, Y., Lu, J., Gjermansen, C., & Schramm, A. (2019). Microalgae–bacteria symbiosis in microalgal growth and biofuel production: a review. Journal of Applied Microbiology, 126(2), 359–368.

    CAS  Article  Google Scholar 

  46. Yu, H., Kim, J., & Lee, C. (2019). Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with Chlorella species. Scientific Reports, 9(1), 6123.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the DBT-RA Program in Biotechnology & Life Sciences and TEQIP-III (MHRD) are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Verma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The co-culture of microalgae and bacteria exhibited increased removal efficiency of nutrients and organic matter in sewage-contaminated lake water.

• The central composite design (CCD) was suitable for the optimization and validation of experimental results.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verma, K., Kumar, P.K., Krishna, S.V. et al. Phycoremediation of Sewage-Contaminated Lake Water Using Microalgae–Bacteria Co-Culture. Water Air Soil Pollut 231, 299 (2020). https://doi.org/10.1007/s11270-020-04652-5

Download citation

Keywords

  • Activated sludge
  • Eutrophication
  • Phycoremediation
  • Microalgae
  • Sewage
  • Symbiosis