Skip to main content

Advertisement

Log in

Enhanced Heavy Metal Removal from Synthetic Stormwater Using Nanoscale Zerovalent Iron–Modified Biochar

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The use of biochar for removal of heavy metals from stormwater is limited due to large area requirements and inadequate removal of nutrients and heavy metals at higher initial concentrations. In this study, biochar-supported nanoscale zerovalent iron (BC-nZVI) was effectively utilized for removing heavy metals from synthetic stormwater. We performed batch adsorption and laboratory-scale column experiments to demonstrate the exceptional ability of BC-nZVI to remove heavy metals (Cu, Cd, and Zn) at varying higher initial concentration range (2.5 to 60 mg L−1) compared with typical urban stormwater runoff. The batch experiment results suggested that the metal removal efficiency of BC-nZVI compared with biochar was enhanced by 43% and 57% in individual metal solution and 50% and 42% in the mixed metal solution for Cd and Zn, respectively. The maximum adsorption capacities of BC-nZVI for individual metal ions increased by 97% and 40% for Cd2+ and Zn2+, respectively, compared with original biochar. A series of characterization studies based on scanning electron microscopy, Fourier transform infrared spectroscopy, and Brunauer–Emmett–Teller revealed the chemical and morphological features of BC-nZVI, which are responsible for the enhanced metal removal. A laboratory-scale column study mimicking the field scale revealed the metal removal efficiencies of BC-nZVI increased by 115% and 123% for Cd2+ and Zn2+, respectively, compared with unmodified biochar. The higher removal efficiencies and adsorption capacities demonstrate the potential use of BC-nZVI as a media for attenuating heavy metals in current stormwater management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barbosa, A. E., Fernandes, J. N., & David, L. M. (2012). Key issues for sustainable urban stormwater management. Water Research, 46(20), 6787–6798.

    Article  CAS  Google Scholar 

  • Bolan, N. S., Naidu, R., Syers, J., & Tillman, R. (1999). Surface charge and solute interactions in soils. In Advances in agronomy (Vol. 67, pp. 87-140): Elsevier.

  • Cederkvist, K., Jensen, M. B., Ingvertsen, S. T., & Holm, P. E. (2016). Controlling stormwater quality with filter soil—event and dry weather testing. Water, 8(8), 349.

    Article  CAS  Google Scholar 

  • Cope, C. O., Webster, D. S., & Sabatini, D. A. (2014). Arsenate adsorption onto iron oxide amended rice husk char. Science of the Total Environment, 488, 554–561.

    Article  CAS  Google Scholar 

  • Dong, H., Deng, J., Xie, Y., Zhang, C., Jiang, Z., Cheng, Y., et al. (2017). Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr (VI) removal from aqueous solution. Journal of Hazardous Materials, 332, 79–86.

    Article  CAS  Google Scholar 

  • Fontecha-Cámara, M., López-Ramón, M., Alvarez-Merino, M., & Moreno-Castilla, C. (2007). Effect of surface chemistry, solution pH, and ionic strength on the removal of herbicides diuron and amitrole from water by an activated carbon fiber. Langmuir, 23(3), 1242–1247.

    Article  CAS  Google Scholar 

  • Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Journal of Hazardous Materials, 267, 194–205.

    Article  CAS  Google Scholar 

  • Grebel, J. E., Mohanty, S. K., Torkelson, A. A., Boehm, A. B., Higgins, C. P., Maxwell, R. M., et al. (2013). Engineered infiltration systems for urban stormwater reclamation. Environmental Engineering Science, 30(8), 437–454.

    Article  CAS  Google Scholar 

  • Guo, X., Yang, Z., Dong, H., Guan, X., Ren, Q., Lv, X., et al. (2016). Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water. Water Research, 88, 671–680.

    Article  CAS  Google Scholar 

  • Helmreich, B., Hilliges, R., Schriewer, A., & Horn, H. (2010). Runoff pollutants of a highly trafficked urban road–correlation analysis and seasonal influences. Chemosphere, 80(9), 991–997.

    Article  CAS  Google Scholar 

  • Hu, X., Ding, Z., Zimmerman, A. R., Wang, S., & Gao, B. (2015). Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Research, 68, 206–216.

    Article  CAS  Google Scholar 

  • Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., et al. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406–433.

    Article  CAS  Google Scholar 

  • Kasaraneni, V. K., Schifman, L. A., Boving, T. B., & Oyanedel-Craver, V. (2014). Enhancement of surface runoff quality using modified sorbents. ACS Sustainable Chemistry & Engineering, 2(7), 1609–1615.

    Article  CAS  Google Scholar 

  • Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere, 178, 466–478.

    Article  CAS  Google Scholar 

  • Li, H., Liu, Y., Chen, Y., Wang, S., Wang, M., Xie, T., et al. (2016). Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability. Scientific Reports, 6, 31616.

    Article  CAS  Google Scholar 

  • Li, X.-q., & Zhang, W.-x. (2007). Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). The Journal of Physical Chemistry C, 111(19), 6939–6946.

    Article  CAS  Google Scholar 

  • Liu, J., Wang, P., Wang, C., Qian, J., & Hou, J. (2017). Heavy metal pollution status and ecological risks of sediments under the influence of water transfers in Taihu Lake, China. Environmental Science and Pollution Research, 24(3), 2653–2666.

    Article  CAS  Google Scholar 

  • Liu, Q., Wu, L., Gorring, M., & Deng, Y. (2019). Aluminum-impregnated biochar for adsorption of arsenic (V) in urban stormwater runoff. Journal of Environmental Engineering, 145(4), 04019008.

    Article  Google Scholar 

  • Lyu, H., Zhao, H., Tang, J., Gong, Y., Huang, Y., Wu, Q., et al. (2018). Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite. Chemosphere, 194, 360–369.

    Article  CAS  Google Scholar 

  • Ma, F., Zhao, B., & Diao, J. (2016). Adsorption of cadmium by biochar produced from pyrolysis of corn stalk in aqueous solution. Water Science and Technology, 74(6), 1335–1345.

    Article  CAS  Google Scholar 

  • Mahmoud, M. E., Abdelwahab, M. S., & Fathallah, E. M. (2013). Design of novel nano-sorbents based on nano-magnetic iron oxide–bound-nano-silicon oxide–immobilized-triethylenetetramine for implementation in water treatment of heavy metals. Chemical Engineering Journal, 223, 318–327.

    Article  CAS  Google Scholar 

  • Mohanty, S. K., Valenca, R., Berger, A. W., Iris, K., Xiong, X., Saunders, T. M., et al. (2018). Plenty of room for carbon on the ground: potential applications of biochar for stormwater treatment. Science of the Total Environment, 625, 1644–1658.

    Article  CAS  Google Scholar 

  • Naeem, M. A., Imran, M., Amjad, M., Abbas, G., Tahir, M., Murtaza, B., et al. (2019). Batch and column scale removal of cadmium from water using raw and acid activated wheat straw biochar. Water, 11(7), 1438.

    Article  CAS  Google Scholar 

  • O'Leary, K. M., Stanway, K. Y., Acaba, L. A., Balcewicz, S. A., & Adams, V. L. (2019). Quantifying the pollutant removal effectiveness of best management practices in urban Watesheds.

    Google Scholar 

  • Prabu, D., Parthiban, R., Ponnusamy, S. K., Anbalagan, S., John, R., & Titus, T. (2017). Sorption of cu (II) ions by nano-scale zero valent iron supported on rubber seed shell. IET Nanobiotechnology, 11(6), 714–724.

    Article  Google Scholar 

  • Qian, L., Shang, X., Zhang, B., Zhang, W., Su, A., Chen, Y., et al. (2019). Enhanced removal of Cr (VI) by silicon rich biochar-supported nanoscale zero-valent iron. Chemosphere, 215, 739–745.

    Article  CAS  Google Scholar 

  • Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K.-H. (2019). Heavy metals in food crops: health risks, fate, mechanisms, and management. Environment International, 125, 365–385.

    Article  CAS  Google Scholar 

  • Reddy, K. R., Xie, T., & Dastgheibi, S. (2014a). Evaluation of biochar as a potential filter media for the removal of mixed contaminants from urban storm water runoff. Journal of Environmental Engineering, 140(12), 04014043.

    Article  CAS  Google Scholar 

  • Reddy, K. R., Xie, T., & Dastgheibi, S. (2014b). Removal of heavy metals from urban stormwater runoff using different filter materials. Journal of Environmental Chemical Engineering, 2(1), 282–292.

    Article  CAS  Google Scholar 

  • Robertson, A., Armitage, N., & Zuidgeest, M. (2019). Stormwater runoff quality on an urban highway in South Africa. Journal of the South African Institution of Civil Engineering, 61(2), 51–56.

    Article  Google Scholar 

  • Roy-Poirier, A., Champagne, P., & Filion, Y. (2010). Review of bioretention system research and design: past, present, and future. Journal of Environmental Engineering, 136(9), 878–889.

    Article  CAS  Google Scholar 

  • Schiff, K., Tiefenthaler, L., Bay, S., & Greenstein, D. (2016). Effects of rainfall intensity and duration on the first flush from parking lots. Water, 8(8), 320.

    Article  Google Scholar 

  • Shojaeizadeh, A., Geza, M., McCray, J., & Hogue, T. S. (2019). Site-scale integrated decision support tool (i-DSTss) for stormwater management. Water, 11(10), 2022.

    Article  Google Scholar 

  • Tian, J., Jin, J., Chiu, P. C., Cha, D. K., Guo, M., & Imhoff, P. T. (2019). A pilot-scale, bi-layer bioretention system with biochar and zero-valent iron for enhanced nitrate removal from stormwater. Water Research, 148, 378–387.

    Article  CAS  Google Scholar 

  • Tsang, D. C., Iris, K., & Xiong, X. (2019). Novel application of biochar in stormwater harvesting. In Biochar from Biomass and Waste (pp. 319-347): Elsevier.

  • Ulrich, B. A., Im, E. A., Werner, D., & Higgins, C. P. (2015). Biochar and activated carbon for enhanced trace organic contaminant retention in stormwater infiltration systems. Environmental Science & Technology, 49(10), 6222–6230.

    Article  CAS  Google Scholar 

  • Ulrich, B. A., Loehnert, M., & Higgins, C. P. (2017). Improved contaminant removal in vegetated stormwater biofilters amended with biochar. Environmental Science: Water Research & Technology, 3(4), 726–734.

    CAS  Google Scholar 

  • Valencia, A., Kilner, J., Chang, N.-B., & Wanielista, M. P. (2019). Chemophysical evaluation of green sorption media for copper removal in stormwater runoff for improving ecosystem and human health. Water, Air, & Soil Pollution, 230(1), 2.

  • Wang, J., Zhang, P., Yang, L., & Huang, T. (2016). Cadmium removal from urban stormwater runoff via bioretention technology and effluent risk assessment for discharge to surface water. Journal of Contaminant Hydrology, 185, 42–50.

    Article  CAS  Google Scholar 

  • Wang, J., Zhao, Y., Yang, L., Tu, N., Xi, G., & Fang, X. (2017). Removal of heavy metals from urban stormwater runoff using bioretention media mix. Water, 9(11), 854.

    Article  CAS  Google Scholar 

  • Wang, S., Gao, B., Zimmerman, A. R., Li, Y., Ma, L., Harris, W. G., et al. (2015). Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology, 175, 391–395.

    Article  CAS  Google Scholar 

  • Withanachchi, S. S., Ghambashidze, G., Kunchulia, I., Urushadze, T., & Ploeger, A. (2018). Water quality in surface water: a preliminary assessment of heavy metal contamination of the Mashavera River, Georgia. International Journal of Environmental Research and Public Health, 15(4), 621.

    Article  CAS  Google Scholar 

  • Yan, J., Han, L., Gao, W., Xue, S., & Chen, M. (2015). Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene. Bioresource Technology, 175, 269–274.

    Article  CAS  Google Scholar 

  • Yan, W., Herzing, A. A., Kiely, C. J., & Zhang, W.-x. (2010). Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water. Journal of Contaminant Hydrology, 118(3–4), 96–104.

  • Yang, F., Zhang, S., Sun, Y., Cheng, K., Li, J., & Tsang, D. C. (2018). Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal. Bioresource technology.

  • Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., et al. (2019). Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chemical Engineering Journal.

  • Yin, S., Feng, C., Li, Y., Yin, L., & Shen, Z. (2015). Heavy metal pollution in the surface water of the Yangtze estuary: a 5-year follow-up study. Chemosphere, 138, 718–725.

    Article  CAS  Google Scholar 

  • Yurekli, Y. (2016). Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes. Journal of Hazardous Materials, 309, 53–64.

    Article  CAS  Google Scholar 

  • Zhang, W., Qian, L., Ouyang, D., Chen, Y., Han, L., & Chen, M. (2019a). Effective removal of Cr (VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: enhanced adsorption and crystallization. Chemosphere, 221, 683–692.

    Article  CAS  Google Scholar 

  • Zhang, Y., Su, Y., Zhou, X., Dai, C., & Keller, A. A. (2013). A new insight on the core–shell structure of zerovalent iron nanoparticles and its application for Pb (II) sequestration. Journal of Hazardous Materials, 263, 685–693.

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhu, C., Liu, F., Yuan, Y., Wu, H., & Li, A. (2019b). Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: a review. Science of the Total Environment, 646, 265–279.

    Article  CAS  Google Scholar 

  • Zhang, Z., Wang, J. J., Ali, A., & DeLaune, R. D. (2016). Heavy metal distribution and water quality characterization of water bodies in Louisiana’s Lake Pontchartrain Basin, USA. Environmental Monitoring and Assessment, 188(11), 628.

    Article  CAS  Google Scholar 

  • Zhou, Y., Gao, B., Zimmerman, A. R., Chen, H., Zhang, M., & Cao, X. (2014). Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresource Technology, 152, 538–542.

    Article  CAS  Google Scholar 

  • Zhu, S., Ho, S.-H., Huang, X., Wang, D., Yang, F., Wang, L., et al. (2017). Magnetic nanoscale zerovalent iron assisted biochar: Interfacial chemical behaviors and heavy metals remediation performance. ACS Sustainable Chemistry & Engineering, 5(11), 9673–9682.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Nelson Foundation Grant and the South Dakota School of Mines and Technology. The authors would like to thank Mr. Forest Cooper for providing support in setting up some of the lab equipment related to this work. We would like to acknowledge with gratitude Ms. Sushma Priyanka Karanam for their help during the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengistu Geza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 47725 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, M.S., Geza, M., Vasquez, R. et al. Enhanced Heavy Metal Removal from Synthetic Stormwater Using Nanoscale Zerovalent Iron–Modified Biochar. Water Air Soil Pollut 231, 220 (2020). https://doi.org/10.1007/s11270-020-04588-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04588-w

Keywords

Navigation