Skip to main content
Log in

Leaf Morpho-anatomical Structure Determines Differential Response Among Restinga Species Exposed to Emissions from an Iron Ore Pelletizing Plant

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

An iron ore pelletizing plant in southeastern Brazil exposes the tropical coastal ecosystems known as restinga to emissions of dust, iron solid particulate matter, and sulfur dioxide (SO2). We aimed to assess the effects of those emissions on the leaf morphology and anatomy of the restinga species Byrsonima sericea, Cordia verbenacea, and Psidium guineense by evaluating visual symptomatology and analyzing the anatomical and micromorphological alterations resulting from exposure. Leaves were collected from individuals growing at two sites: a restinga forest fragment located 800 m away from the pelletizing plant and a restinga conservation unit 20 km away, which served as reference site. In all three species, individuals growing near the pelletizing plant showed necrotic regions on the leaf and foliar micromorphological alterations like turgor loss of epidermal cells, cuticle and epicuticular wax erosion, stomatal obliteration, and rupture and plasmolysis of trichomes. Anatomically, we found cell collapse, cell hypertrophy, and formation of a wound tissue. C. verbenacea showed the most severe visual and anatomical damage, being thus considered the most sensitive species to emissions. Leaf structural features such as uniseriate epidermis, lack of hypodermis, and presence of trichomes contributed to the highest sensitivity of C. verbenacea. Our findings reinforce the importance of performing morpho-anatomical studies to elucidate how leaf structure determines differential sensitivity to airborne pollutants in native species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrade, G. C., & Silva, L. C. (2016). Responses of tropical legumes from the Brazilian Atlantic Rainforest to simulated acid rain. Protoplasma., 254, 1639–1649.

    Article  Google Scholar 

  • Araújo, T. O., Freitas-Silva, L., Santana, B. V. N., Kuki, K. N., Pereira, E. G., Azevedo, A. A., & Silva, L. C. (2014). Morphoanatomical responses induced by excess iron in roots of two tolerant grass species. Environmental Science and Pollution Research, 22, 2187–2195.

    Article  Google Scholar 

  • Arrivabene, H. P., Souza, I. C., Có, W. L. O., Conti, M. M., Wunderlin, D. A., & Milane z, C. R. D. (2015). Effect of pollution by particulate iron on the morphoanatomy, histochemistry, and bioaccumulation of three mangrove plant species in Brazil. Chemosphere, 127, 27–34.

    Article  CAS  Google Scholar 

  • Assis, A. M., Pereira, O. J., & Thomaz, L. D. (2004). Fitossociologia de uma floresta de restinga no Parque Estadual Paulo César Vinha, Setiba, município de Guarapari (ES). Revista Brasileira de Botânica, 27, 349–336.

    Google Scholar 

  • Azevedo, A. A. (1995). Ação do flúor, em chuva simulada, sobre a estrutura foliar de Glycine Max (L.) Merril. D.Sc. Thesis, Universidade de São Paulo, São Paulo, Brasil.

  • Becana, M., Moran, J. F., & Iturbe-Ormaetxe, I. (1998). Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant and Soil, 201, 137–147.

    Article  CAS  Google Scholar 

  • Chaves, A. L. F., Silva, E. A. M., Azevedo, A. A., Oliva, M. A., & Matsuoka, K. (2002). Ação do flúor dissolvido em chuva simulada sobre a estrutura foliar de Panicum maximum Jacq. (colonião) e Chloris gayana Kunth. (capim-Rhodes) – Poaceae. Acta Botânica Brasílica, 16, 395–406.

    Article  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

    Article  CAS  Google Scholar 

  • Grantz, D. A., Garner, J. H. B., & Johnson, D. W. (2003). Ecological effects of particulate matter. Environment International, 29, 213–239.

    Article  CAS  Google Scholar 

  • Henriques, R. P. B., Araújo, D. S. D., & Hay, J. D. (1986). Descrição e classificação dos tipos de vegetação da restinga de Carapebus, Rio de Janeiro. Revista Brasileira de Botânica, 9, 173–189.

    Google Scholar 

  • Karnovsky, M. J. (1965). A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. The Journal of Cell Biology, 27, 137–138.

    Google Scholar 

  • Kobayashi, T., & Nishizawa, N. K. (2012). Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology, 63, 131–152.

    Article  CAS  Google Scholar 

  • Kuki, K. N., Oliva, M. A., & Pereira, E. G. (2008a). Iron ore industry emissions as a potential ecological risk factor for tropical coastal vegetation. Environmental Management, 42, 111–121.

    Article  Google Scholar 

  • Kuki, K. N., Oliva, M. A., Pereira, E. G., Costa, A. C., & Cambraia, J. (2008b). Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L. Science of the Total Environment, 403, 207–2014.

    Article  CAS  Google Scholar 

  • Kuki, K. N., Oliva, M. A., & Costa, A. C. (2009). The simulated effects of iron dust and acidity during the early stages of establishment of two coastal plant species. Water, Air, and Soil Pollution, 196, 287–295.

    Article  CAS  Google Scholar 

  • Lopes, S. A., Oliva, M. A., & Martinez, C. A. (2002). Impacto das imissões de dióxido de enxofre e deposição de material particulado de ferro em espécies vegetais de restinga (Anchieta, ES): Avaliação ecofisiológica. In E. L. G. Espíndola, C. M. R. Paschoal, O. Rocha, M. B. C. Bohrer, & O. Neto (Eds.), Ecotoxicologia – Perspectivas para o século XXI (pp. 53–71). São Carlos: RiMa Artes e Textos.

    Google Scholar 

  • Manninen, S., & Huttunen, S. (2000). Response of needle sulphur and nitrogen concentrations of scots pine versus Norway spruce to SO2 and NO2. Environmental Pollution, 107(3), 421–436.

    Article  CAS  Google Scholar 

  • Neves, N. R., Oliva, M. A., da Cruz, C. D., Costa, A. C., Ribas, R. F., & Pereira, E. G. (2009). Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: Potential use in environmental risk assessment. Science of the Total Environment, 407, 3740–3745.

    Article  CAS  Google Scholar 

  • O’Brian, P. P., & McCully, M. E. (1981). The study of plants structure principles and select methods. Termarcarphi Pty. Ltda: Melbourne 45p.

    Google Scholar 

  • Pal, A., Kulshreshtha, K., Ahmad, K. J., & Behl, H. M. (2002). Do leaf surface characters play a role in plant resistance to auto-exhaust pollution? Flora, 197(1), 47–55.

    Article  Google Scholar 

  • Pereira OJ, (1990) Caracterização fitofisionômica da restinga de Setiba - Guarapari/ES. In Anais do II Simpósio de Ecossistemas da Costa Sul e Sudeste Brasileira (S. Watanabe, coord.). Aciesp, São Paulo 3: 207–219.

  • Pereira, E. G., Oliva, M. A., Kuki, K. N., & Cambraia, J. (2009). Photosynthetic changes and oxidative stress caused by iron ore dust deposition in the tropical CAM tree Clusia hilariana. Trees, 23, 277–285.

    Article  CAS  Google Scholar 

  • Prusty, B. A. K., Mishra, P. C., & Azeez, P. A. (2005). Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India. Ecotoxicology and Environmental Safety, 60, 228–235.

    Article  CAS  Google Scholar 

  • Raí, A., Kulshreshtha, K., Srivastava, P. K., & Mohanty, C. S. (2010). Leaf surface structure alterations due to particulate pollution in some common plants. Environmentalist, 30, 18–23.

    Article  Google Scholar 

  • Resolução CONAMA n° 4, de 31 de março de 1993 (Publicada no DOU n° 195, de 13 de outubro de 1993) seção 1, p. 15264.

  • Rocha, D. I., Silva, L. C., Pereira, E. G., Sant’Anna-Santos, B. F., Gontijo, E. R., & Oliva, M. A. (2014). Early detection of injuries in leaves of Clusia hilariana Schletlendal (Clusiaceae) caused by particulate deposition of iron. Revista Árvore, 38, 423–432.

    Article  Google Scholar 

  • Rout, J. R., Behera, S., Kesharl, N., Ram, S. S., Bhar, S., Chakraborty, A., Sudarshan, M., & Sahoo, S. L. (2015). Effect of iron stress on Withania somnifera L.: antioxidant enzyme response and nutrient elemental uptake of in vitro grown plants. Ecotoxicology, 24(2), 401–407.

    Article  CAS  Google Scholar 

  • Sant’Anna-Santos, B. F., Silva, L. C., Azevedo, A. A., & Aguiar, R. (2006). Effects of simulated acid rain on leaf anatomy and micromorphology of Genipa americana L. (Rubiaceae). Brazilian Archives of Biology and Technology, 49, 313–321.

    Article  Google Scholar 

  • Sant’Anna-Santos, B. F., Azevedo, A. A., Silva, L. C., & Oliva, M. A. (2012). Diagnostic and prognostic characteristics of phytotoxicity caused by fluoride on Spondias dulcis Forst. F. (Anacardiaceae). Anais da Academia Brasileira de Ciências, 84, 689–702.

    Article  Google Scholar 

  • Santana, B. V. N., Araújo TO, Andrade, G. C., Freitas-Silva, L., Kuki, K. N., Pereira, E. G., Azevedo, A. A., & Silva, L. C. (2014). Leaf morphoanatomy of species tolerant to excess iron and evaluation of their phytoextraction potential. Environmental Science and Pollution Research, 1, 2550–2256.

    Article  Google Scholar 

  • Scarano, F. R. (2002). Structure, function and floristic relationships of plants communities in stressful habitats marginal to Brazilian Atlantic rainforest. Annals of Botany, 90, 517–524.

    Article  Google Scholar 

  • Silva, L. C., Oliva, M. A., Azevedo, A. A., Araújo, J. M., & Aguiar, R. M. (2005). Micromorphological and anatomical alterations caused by simulated acid rain in restinga plants: Eugenia uniflora and Clusia hilariana. Water, Air, and Soil Pollution, 168, 129–143.

    Article  CAS  Google Scholar 

  • Silva, L. C., Oliva, M. A., Azevedo, A. A., & Araújo, J. M. (2006). Responses of restinga plant species to pollution from an iron pelletization factory. Water, Air, and Soil Pollution, 175, 241–256.

    Article  Google Scholar 

  • Silva, L. C., Araujo, T. O., Martinez, C. A., Lobo, F. A., Azevedo, A. A., & Oliva, M. A. (2015). Differential responses of C3 and CAM native Brazilian plant species to a SO2 and SPMFe contaminated Restinga. Environmental Science and Pollution Research, 22, 14007–14017.

    Article  Google Scholar 

  • Silva, L. C., Araújo, T. O., Siqueira-Silva, A. I., Pereira, T. A. R., Castro, L. N., Silva, E. C., Oliva, M. A., & Azevedo, A. A. (2017). Clusia hilariana and Eugenia uniflora as bioindicators of atmospheric pollutants emitted by an iron pelletizing factory in Brazil. Environmental Science and Pollution Research, 24, 1–10.

    Article  Google Scholar 

  • Siqueira-Silva, A. I., Silva, L. C., Azevedo, A. A., & Oliva, M. A. (2012). Iron plaque formation and morphoanatomy of roots from species of resting subjected to excess iron. Ecotoxicology and Environmental Safety, 78, 265–275.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We also thank SAMARCO Mining Company and Núcleo de Microscopia e Microanálise at UFV.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. National Council for Scientific and Technological Development (CNPq), Brazil, provided support for the research productivity scholarship granted to L.C. Silva 309308/2018-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luzimar Campos da Silva.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, L.C., de Freitas-Silva, L., Rocha, D.I. et al. Leaf Morpho-anatomical Structure Determines Differential Response Among Restinga Species Exposed to Emissions from an Iron Ore Pelletizing Plant. Water Air Soil Pollut 231, 152 (2020). https://doi.org/10.1007/s11270-020-04533-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04533-x

Keywords

Navigation