Skip to main content

Advertisement

Log in

Sub-Arctic Field Degradation of Metsulfuron-Methyl in Two Alaskan Soils and Microbial Community Composition Effects

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Metsulfuron-methyl is a sulfonylurea herbicide, primarily with postemergence activity but also with occasional pre-emergent activity, used for control of weeds and woody plants on agricultural lands and natural areas. The active ingredient is popular in Alaska as Ally XP formulation; little is known about its high-latitude environmental behavior and potential adverse impacts on soil health in cold regions. Our study determined field degradation rates at two experimental farms in Alaska and assessed whether laboratory-incubated soil amended at 1× or 100× label rates would adversely impact microbial community diversity. DT50 was observed at 4.12–5.13 days, with the compound below 1 μg/kg detection limit at 90 days. Interestingly, this is faster than the reported range of field half-lives in the literature (7–42 days). Microbial community composition was not affected by MSM at both 1× and 100× rates. High-latitude regions exhibit extreme summer photoperiods that may exacerbate the MSM degradation/dissipation rate; we postulate that timing of application may have large impacts on MSM attenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alaska Climate Resource Center (2013) Statewide summary. http://akclimate.org/Summary/Statewide/2013/Jun (accessed January 25, 2019).

  • Arabet, D., Tempel, S., Fons, M., Denis, Y., Jourlin-Castelli, C., Armitano, J., et al. (2014). Effects of a sulfonylurea herbicide on the soil bacterial community. Environmental Science and Pollution Research, 21(8), 5619–5627.

    Article  CAS  Google Scholar 

  • Boldt, T. S., & Jacobsen, C. S. (1998). Different toxic effects of the sulfonylurea herbicides metsulfuron methyl, chlorsulfuron and thifensulfuron methyl on fluorescent pseudomonads isolated from an agricultural soil. FEMS Microbiology Letters, 161(1), 29–35.

    Article  CAS  Google Scholar 

  • Bossi, R., Seiden, P., Andersen, S. M., Jacobsen, C. S., & Streibig, J. C. (1999). Analysis of metsulfuron-methyl in soil by liquid chromatography/tandem mass spectrometry. Application to a field dissipation study. Journal of Agricultural and Food Chemistry, 47(10), 4462–4468.

    Article  CAS  Google Scholar 

  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335.

    Article  CAS  Google Scholar 

  • Caselli, M. (2005). Light-induced degradation of metsulfuron-methyl in water. Chemosphere, 59(8), 1137–1143.

    Article  CAS  Google Scholar 

  • Clarke, K. R., & Gorley, R. N. (2001). PRIMER v5: User manual. Tutorial Primer-E, Plymouth, 9(1).

  • Clay, S. A., Koskinen, W. C., & Baker, J. M. (1995). Alachlor and metolachlor movement during winter and early spring at three midwestern sites. Journal of Environmental Science & Health Part B, 30(5), 637–650.

    Article  Google Scholar 

  • Conn, J. S., & Cameron, J. S. (1988). Persistence and carry-over of metribuzin and triallate in subarctic soils. Canadian Journal of Soil Science, 68(4), 827–830.

    Article  CAS  Google Scholar 

  • Crouzet, O., Batisson, I., Besse-Hoggan, P., Bonnemoy, F., Bardot, C., Poly, F., et al. (2010). Response of soil microbial communities to the herbicide mesotrione: A dose-effect microcosm approach. Soil Biology and Biochemistry, 42(2), 193–202.

    Article  CAS  Google Scholar 

  • Du, P., Wu, X., Xu, J., Dong, F., Liu, X., Zhang, Y., & Zheng, Y. (2018). Clomazone influence soil microbial community and soil nitrogen cycling. Science of the Total Environment, 644, 475–485.

    Article  CAS  Google Scholar 

  • Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460–2461.

    Article  CAS  Google Scholar 

  • Filimon, M. N., Vlad, D. C., Verdes, D., & Popescu, R. (2015). Enzymatic and biological assessment of sulfonylurea herbicide impact on soil bacterial communities. African Journal of Agricultural Research, 10(14), 1702–1708.

    Article  CAS  Google Scholar 

  • Fletcher, J. S., Pfleeger, T. G., & Ratsch, H. C. (1993). Potential environmental risks associated with the new sulfonylurea herbicides. Environmental Science & Technology, 27(10), 2250–2252.

    Article  CAS  Google Scholar 

  • García-Delgado, C., Barba-Vicente, V., Marín-Benito, J. M., Igual, J. M., Sánchez-Martín, M. J., & Rodríguez-Cruz, M. S. (2019). Influence of different agricultural management practices on soil microbial community over dissipation time of two herbicides. Science of the Total Environment, 646, 1478–1488.

    Article  Google Scholar 

  • Guijarro, K. H., Aparicio, V., De Gerónimo, E., Castellote, M., Figuerola, E. L., Costa, J. L., & Erijman, L. (2018). Soil microbial communities and glyphosate decay in soils with different herbicide application history. Science of the Total Environment, 634, 974–982.

    Article  CAS  Google Scholar 

  • Imfeld, G., & Vuilleumier, S. (2012). Measuring the effects of pesticides on bacterial communities in soil: A critical review. European Journal of Soil Biology, 49, 22–30.

    Article  CAS  Google Scholar 

  • Jacobsen, C. S., & Hjelmsø, M. H. (2014). Agricultural soils, pesticides and microbial diversity. Current Opinion in Biotechnology, 27, 15–20.

    Article  CAS  Google Scholar 

  • Karpouzas, D. G., Papadopoulou, E., Ipsilantis, I., Friedel, I., Petric, I., Udikovic-Kolic, N., et al. (2014a). Effects of nicosulfuron on the abundance and diversity of arbuscular mycorrhizal fungi used as indicators of pesticide soil microbial toxicity. Ecological Indicators, 39, 44–53.

    Article  CAS  Google Scholar 

  • Karpouzas, D. G., Kandeler, E., Bru, D., Friedel, I., Auer, Y., Kramer, S., et al. (2014b). A tiered assessment approach based on standardized methods to estimate the impact of nicosulfuron on the abundance and function of the soil microbial community. Soil Biology and Biochemistry, 75, 282–291.

    Article  CAS  Google Scholar 

  • Li, Y., Zimmerman, W. T., Gorman, M. K., Reiser, R. W., Fogiel, A. J., & Haney, P. E. (1999). Aerobic soil metabolism of metsulfuron-methyl. Pesticide Science, 55(4), 434–445.

    Article  CAS  Google Scholar 

  • Lozupone, C., & Knight, R. (2005). UniFrac: A new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 71(12), 8228–8235.

    Article  CAS  Google Scholar 

  • Lu, P., Jin, L., Liang, B., Zhang, J., Li, S., Feng, Z., & Huang, X. (2011). Study of biochemical pathway and enzyme involved in metsulfuron-methyl degradation by Ancylobacter sp. XJ-412-1 isolated from soil. Current Microbiology, 62(6), 1718–1725.

    Article  CAS  Google Scholar 

  • McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., DeSantis, T. Z., Probst, A., et al. (2012). An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. The ISME Journal, 6(3), 610.

    Article  CAS  Google Scholar 

  • Muñoz-Leoz, B., Ruiz-Romera, E., Antigüedad, I., & Garbisu, C. (2011). Tebuconazole application decreases soil microbial biomass and activity. Soil Biology and Biochemistry, 43(10), 2176–2183.

    Article  Google Scholar 

  • NASS National Agriculture Statistics Service (2019) https://www.nass.usda.gov/Statistics_by_State/Alaska/Publications/Annual_Statistical_Bulletin/2017/AKANNUAL2017.pdf (accessed August 1, 2018).

  • Newton, M., Cole, E. C., & Tinsley, I. J. (2008). Dissipation of four forest-use herbicides at high latitudes. Environmental Science and Pollution Research, 15(7), 573–583.

    Article  CAS  Google Scholar 

  • OECD (2002). Test no. 307: aerobic and anaerobic transformation in soil. OECD Guidelines for the Testing of Chemicals, Section 3. Paris: OECD Publishing. https://doi.org/10.1787/9789264070509-en.

  • Paul, R., & Singh, S. B. (2008). Phototransformation of herbicide metsulfuron methyl. Journal of Environmental Science and Health, Part B, 43(6), 506–512.

  • Petric, I., Karpouzas, D. G., Bru, D., Udikovic-Kolic, N., Kandeler, E., Djuric, S., & Martin-Laurent, F. (2016). Nicosulfuron application in agricultural soils drives the selection towards NS-tolerant microorganisms harboring various levels of sensitivity to nicosulfuron. Environmental Science and Pollution Research, 23(5), 4320–4333.

    Article  CAS  Google Scholar 

  • Pons, N., & Barriuso, E. (1998). Fate of metsulfuron-methyl in soils in relation to pedo-climatic conditions. Pesticide Science, 53(4), 311–323.

    Article  CAS  Google Scholar 

  • Pose-Juan, E., Igual, J. M., Sánchez-Martín, M. J., & Rodríguez-Cruz, M. S. (2017). Influence of herbicide triasulfuron on soil microbial community in an unamended soil and a soil amended with organic residues. Frontiers in Microbiology, 8, 378.

    Article  Google Scholar 

  • Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One, 5(3), e9490.

    Article  Google Scholar 

  • Ranft, R. D., Seefeldt, S. S., Zhang, M., & Barnes, D. L. (2010). Development of a soil bioassay for triclopyr residues and comparison with a laboratory extraction. Weed Technology, 24(4), 538–543.

    Article  CAS  Google Scholar 

  • Saeki, M., & Toyota, K. (2004). Effect of bensulfuron-methyl (a sulfonylurea herbicide) on the soil bacterial community of a paddy soil microcosm. Biology and Fertility of Soils, 40(2), 110–118.

    Article  CAS  Google Scholar 

  • Seefeldt, S. S., Boydston, R. A., Kaspari, P. N., Zhang, M., Carr, E., Smeenk, J., & Barnes, D. L. (2013). Aminopyralid residue impacts on potatoes and weeds. American Journal of Potato Research, 90(3), 239–244.

    Article  CAS  Google Scholar 

  • Seefeldt, S. S., Boydston, R. A., & Kaspari, P. N. (2014). Clopyralid and dicamba residue impacts on potatoes and weeds. American Journal of Potato Research, 91(6), 625–631.

    Article  Google Scholar 

  • Singleton, D. R., Furlong, M. A., Rathbun, S. L., & Whitman, W. B. (2001). Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Applied and Environmental Microbiology, 67(9), 4374–4376.

    Article  CAS  Google Scholar 

  • Sondhia, S. (2008). Persistence of metsulfuron-methyl in wheat crop and soil. Environmental Monitoring and Assessment, 147(1–3), 463–469.

    Article  CAS  Google Scholar 

  • Tomco, P. L., Duddleston, K. N., Schultz, E. J., Hagedorn, B., Stevenson, T. J., & Seefeldt, S. S. (2016). Field degradation of aminopyralid and clopyralid and microbial community response to application in Alaskan soils. Environmental Toxicology and Chemistry, 35(2), 485–493.

    Article  CAS  Google Scholar 

  • Wang, H., Liu, X., Wu, J., Huang, P., Xu, J., & Tang, C. (2007). Impact of soil moisture on metsulfuron-methyl residues in Chinese paddy soils. Geoderma, 142(3–4), 325–333.

    Article  CAS  Google Scholar 

  • Weed Science Society Of America. (2014). In S. A. Senseman (Ed.), Herbicide handbook (10th ed.). Lawerence: Weed Science Society of America.

    Google Scholar 

  • Wu, X., Xu, J., Dong, F., Liu, X., & Zheng, Y. (2014). Responses of soil microbial community to different concentration of fomesafen. Journal of Hazardous Materials, 273, 155–164.

    Article  CAS  Google Scholar 

  • Yousaf, S., Khan, S., & Aslam, M. T. (2013). Effect of pesticides on the soil microbial activity. Pakistan Journal of Zoology, 45(4). https://www.zsp.com.pk/pdf45/1063-1067%20_26_%20PJZ-1043-12%205-8-13%20_re-amended_.pdf.

  • Zabaloy, M. C., Gómez, E., Garland, J. L., & Gómez, M. A. (2012). Assessment of microbial community function and structure in soil microcosms exposed to glyphosate. Applied Soil Ecology, 61, 333–339.

    Article  Google Scholar 

Download references

Acknowledgments

We thank A. Butler, B. Wrigley, P. Kaspari, C. Mancuso, and staff at the Delta Junction and Matanuska experimental farms for their technical assistance.

Funding

Funding was provided by the Salcha-Delta Soil Water Conservation District through USDA-NRCS, the University of Alaska Anchorage (UAA) innovate award to P. Tomco, and the UAA Office of Undergraduate Research and Scholarship (to K. Rodriguez-Baisi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick L. Tomco.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 2173 kb)

ESM 2

(DOCX 20.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomco, P.L., Seefeldt, S.S., Rodriguez-Baisi, K. et al. Sub-Arctic Field Degradation of Metsulfuron-Methyl in Two Alaskan Soils and Microbial Community Composition Effects. Water Air Soil Pollut 231, 157 (2020). https://doi.org/10.1007/s11270-020-04528-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04528-8

Keywords

Navigation