Skip to main content
Log in

Common Anions Affected Removal of Carbon Tetrachloride in Groundwater Using Granular Sponge Zerovalent Iron

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Significant attention has been devoted over the past two decades to research and field applications of zerovalent iron (ZVI) technologies for groundwater remediation. The uncertainty of ZVI effectiveness under complex subsurface environment will affect the application of ZVI remedial techniques. The effects of groundwater common anions Cl, SO42−, and HCO3 on CCl4 degradation by sponge ZVI were investigated through batch experiments. The surface structure and composition of ZVI before and after reaction were determined by SEM-EDS, X-ray diffraction, and X-ray photoelectron spectroscopy. Cl, SO42−, and HCO3 promoted the degradation of CCl4 with the order of HCO3 > SO42− > Cl. HCO3 enhanced the effect of ZVI on CCl4 degradation as a buffer and an oxidant providing cathodic reaction; SO42− dissolved the hydroxide on the ZVI surface to promote the degradation; and Cl accelerated the degradation rate by pitting corrosion on the ZVI surface. After reaction, the iron oxides on ZVI surface were FeOOH and Fe2O3 in Cl, SO42− system and the FeOOH was the only iron oxide in HCO3 system. The results suggest that the performance of ZVI will be affected by the composition of field groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel-Samad, H., & Watson, P. R. (1997). An XPS study of the adsorption of chromate on goethite (α-FeOOH). Applied Surface Science, 108(3), 371–377.

    Article  CAS  Google Scholar 

  • Agrawal, A., Ferguson, W. J., Gardner, B. O., Christ, J. A., Bandstra, J. Z., & Tratnyek, P. G. (2002). Effects of carbonate species on the kinetics of dechlorination of 1,1,1-trichloroethane by zero-valent iron. Environmental Science & Technology, 36(20), 4326–4333.

    Article  CAS  Google Scholar 

  • Bae, S., & Lee, W. (2014). Influence of riboflavin on nanoscale zero-valent iron reactivity during the degradation of carbon tetrachloride. Environmental Science & Technology, 48(4), 2368–2376.

    Article  CAS  Google Scholar 

  • Bautista, P., Mohedano, A. F., Menendez, N., Casas, J. A., & Rodriguez, J. J. (2010). Catalytic wet peroxide oxidation of cosmetic wastewaters with Fe-bearing catalysts. Catalysis Today, 151(1), 148–152.

    Article  CAS  Google Scholar 

  • Bi, E., Bowen, I., & Devlin, J. F. (2009). Effect of mixed anions (HCO3-SO42−-ClO4) on granular iron (Fe0) reactivity. Environmental Science & Technology, 43(15), 5975–5981.

    Article  CAS  Google Scholar 

  • Blowes, D. W., Ptacek, C. J., Benner, S. G., McRae, C. W. T., Bennett, T. A., & Puls, R. W. (2000). Treatment of inorganic contaminants using permeable reactive barriers. Journal of Contaminant Hydrology, 45, 123–137.

    Article  CAS  Google Scholar 

  • Devlin, J. F., & Allin, K. O. (2005). Major anion effects on the kinetics and reactivity of granular iron in glass-encased magnet batch reactor experiments. Environmental Science & Technology, 39(6), 1868–1874.

    Article  CAS  Google Scholar 

  • Dominguez, C. M., Rodriguez, V., & Montero, E. (2019). Methanol-enhanced degradation of carbon tetrachloride by alkaline activation of persulfate: Kinetic model. Science of the Total Environment, 666, 631–640.

    Article  CAS  Google Scholar 

  • Ferguson, J. F., & Pietari, J. M. H. (2000). Anaerobic transformations and bioremediation of chlorinated solvents. Environmental Pollution, 107(2), 209–215.

    Article  CAS  Google Scholar 

  • Gotpagar, J., Lyuksyutov, S., Cohn, R., & Bhattacharvva, D. (1999). Reductive dehalogenation of trichloroethylene with zero-valent iron: surface profiling microscopy and rate enhancement studies. Langmuir, 15(24), 8412–8420.

    Article  CAS  Google Scholar 

  • Grosvenor, A. P., Kobe, B. A., Biesinger, M. C., & Mclntyre, N. S. (2004). Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis, 36(12), 1564–1574.

    Article  CAS  Google Scholar 

  • Gu, B., Liang, T. J., Dickey, M. J., Roh, Y., Kinsall, B. L., Palumbo, A. V., & Jacobs, G. K. (1999). Biochemical dynamics in zero-valent iron columns: implications for permeable reactive barriers. Environmental Science & Technology, 33(13), 2170–2177.

    Article  CAS  Google Scholar 

  • Guan, X., Sun, Y., Qin, H., Li, J., Lo, I. M. C., & Dong, H. (2015). The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Research, 75, 224–248.

    Article  CAS  Google Scholar 

  • Han, B., Zhu, X., Pei, Z., & Liu, X. (2011). Transport of carbon tetrachloride in a karst aquifer in a northern city, China. In M. Stoytcheva (Ed.), Pesticides in the modern world-risks and benefits (pp. 553–570). Rijeka: IntechOpen.

    Google Scholar 

  • Hernandez, R., Zappi, M., & Kuo, C. H. (2004). Chloride effect on TNT degradation by zerovalent iron or zinc during water treatment. Environmental Science & Technology, 38(19), 5157–5163.

    Article  CAS  Google Scholar 

  • Jeen, S. W., Gillham, R. W., & Blowes, D. W. (2006). Effects of carbonate precipitates on long-term performance of granular iron for reductive dechlorination of TCE. Environmental Science & Technology, 40(20), 6432–6437.

    Article  CAS  Google Scholar 

  • Klausen, J., Ranke, J., & Schwarzenbach, R. P. (2001). Influence of solution composition and column aging on the reduction of nitroaromatic compounds by zero-valent iron. Chemosphere, 44(4), 511–517.

    Article  CAS  Google Scholar 

  • Lefevre, E., Bossa, N., Wiesner, M. R., & Gunsch, C. K. (2016). A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities. Science of the Total Environment, 565, 889–901.

    Article  CAS  Google Scholar 

  • Li, X., & Zhang, W. (2006). Iron nanoparticles: the core-shell structure and unique properties for Ni (II) sequestration. Langmuir, 22(10), 4638–4642.

    Article  CAS  Google Scholar 

  • Li, X., & Zhang, W. (2007). Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C, 111(19), 6939–6946.

    Article  CAS  Google Scholar 

  • Li, H., Wan, J., Ma, Y., Huang, M., Wang, Y., & Chen, Y. (2014). New insights into the role of zero-valent iron surface oxidation layers in persulfate oxidation of dibutyl phthalate solutions. Chemical Engineering Journal, 250, 137–147.

    Article  CAS  Google Scholar 

  • Liu, Y., Phenrat, T., & Lowry, G. V. (2007). Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environmental Science & Technology, 41(22), 7881–7887.

    Article  CAS  Google Scholar 

  • Phenrat, T., Schoenfelder, D., Losi, M., Yi, J., Peck, S. A., & Lowry, G. V. (2009). Treatability study for a TCE contaminated area using nanoscale-and microscale-zerovalent iron particles: reactivity and reactive life time. In C. L. Geriger & K. M. Carvalho-Knighton (Eds.), Environmental Applications of Nanoscale and Microscale Reactive Metal Particles (pp. 183–202). Washington DC: American Chemical Society.

    Google Scholar 

  • Qiao, J., Song, Y., Sun, Y., & Guan, X. (2018). Effect of solution chemistry on the reactivity and electron selectivity of zerovalent iron toward Se(VI) removal. Chemical Engineering Journal, 353, 246–253.

    Article  CAS  Google Scholar 

  • Reardon, E. J. (1995). Anaerobic corrosion of granular iron: measurement and interpretation of hydrogen evolution rates. Environmental Science & Technology, 29(12), 2936–2945.

    Article  CAS  Google Scholar 

  • Scherer, M. M., Balko, B. A., Gallagher, D. A., & Tratnyek, P. G. (1998). Correlation analysis of rate constants for dechlorination by zero-valent iron. Environmental Science & Technology, 32(19), 3026–3033.

    Article  CAS  Google Scholar 

  • Su, Y., Hsu, C. Y., & Shih, Y. (2012). Effects of various ions on the dechlorination kinetics of hexachlorobenzene by nanoscale zero-valent iron. Chemosphere, 88(11), 1346–1352.

    Article  CAS  Google Scholar 

  • Sun, Y. P., Li, X., Cao, J., Zhang, W., & Wang, H. P. (2006). Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120, 47–56.

    Article  CAS  Google Scholar 

  • Sun, Y., Li, J., Huang, T., & Guan, X. (2016). The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: a review. Water Research, 100, 277–295.

    Article  CAS  Google Scholar 

  • Sun, Y., Hu, Y., Huang, T., Li, J., Qin, H., & Guan, X. (2017). Combined effect of weak magnetic fields and anions on arsenite sequestration by zerovalent iron: kinetics and mechanisms. Environmental Science & Technology, 51(7), 3742–3750.

    Article  CAS  Google Scholar 

  • Temesghen, W., & Sherwood, P. M. (2002). Analytical utility of valence band X-ray photoelectron spectroscopy of iron and its oxides, with spectral interpretation by cluster and band structure calculations. Analytical and Bioanalytical Chemistry, 373(7), 601–608.

    Article  CAS  Google Scholar 

  • Zawaideh, L. L., & Zhang, T. C. (1998). The effects of pH and addition of an organic buffer (HEPES) on nitrate transformation in Fe0-water systems. Water Science and Technology, 38(7), 107–115.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqiang Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Han, B. & Feng, Q. Common Anions Affected Removal of Carbon Tetrachloride in Groundwater Using Granular Sponge Zerovalent Iron. Water Air Soil Pollut 231, 138 (2020). https://doi.org/10.1007/s11270-020-04494-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04494-1

Keywords

Navigation