Skip to main content
Log in

CTMAB-Modified Bentonite–Based PRB in Remediating Cr(VI) Contaminated Groundwater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Cetyl trimethylammonium bromide (CTMAB)–modified bentonite was synthesized as adsorbent for the removal of Cr(VI) from aqueous solutions. Batch adsorption studies show that the adsorption capacity of CTMAB-modified bentonite (1.962 mg g−1) was about 19 times higher than that of natural bentonite (0.101 mg g−1). The weakly acidic or neutral environment can improve the adsorption ability of both natural and modified bentonites. Cr(VI) adsorption onto CTMAB-modified bentonite follows the Langmuir model and obeys the pseudo-second-order model. In a fixed-bed column test, the adsorption capacities of 5% modified bentonite with 95% sand, and 10% modified bentonite with 90% sand were 0.31 mg g−1 and 0.35 mg g−1, respectively. These values were much lower than their theoretical maximum adsorption capacity using the Langmuir model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abollino, O., Aceto, M., Malandrino, M., Sarzanini, C., & Mentasti, E. (2003). Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Research, 37, 1619–1627.

    Article  CAS  Google Scholar 

  • Ahmad, S. & Yasin, K.: 2018, Removal of organic pollutants by using surfactant modified Bentonite, pp. 447-456.

  • Akar, S. T., Yetimoglu, Y., & Gedikbey, T. (2009). Removal of chromium (VI) ions from aqueous solutions by using Turkish montmorillonite clay: effect of activation and modification. Desalination, 244, 97–108.

    Article  CAS  Google Scholar 

  • Bajda, T., & Kłapyta, Z. (2013). Adsorption of chromate from aqueous solutions by HDTMA-modified clinoptilolite, glauconite and montmorillonite. Applied Clay Science, 86, 169–173.

    Article  CAS  Google Scholar 

  • Bellot, J. C. & Condoret, J. S.: 1993, Modeling of liquid-chromatography equilibria, pp. 365-376.

  • Boni, M. R., & Sbaffoni, S. (2009). The potential of compost-based biobarriers for Cr(VI) removal from contaminated groundwater: column test. Journal of Hazardous Materials, 166, 1087–1095.

    Article  CAS  Google Scholar 

  • Buzetzky, D., Tóth, N. C., Nagy, N. M., & Kónya, J. (2019). Application of modified bentonites for arsenite(III) removal from drinking water. Periodica Polytechnica: Chemical Engineering, 63, 113.

    Article  CAS  Google Scholar 

  • Calero, M., Hernáinz, F., Blázquez, G., Tenorio, G., & Martín-Lara, M. A. (2009). Study of Cr(III) biosorption in a fixed-bed column. Journal of Hazardous Materials, 171, 886–893.

    Article  CAS  Google Scholar 

  • Chang, Y., Lv, X., Zha, F., Wang, Y., & Lei, Z. (2009). Sorption of p-nitrophenol by anion–cation modified palygorskite. Journal of Hazardous Materials, 168, 826–831.

    Article  CAS  Google Scholar 

  • Chen, C., Zhou, W., Yang, Q., Zhu, L., & Zhu, L. (2014). Sorption characteristics of nitrosodiphenylamine (NDPhA) and diphenylamine (DPhA) onto organo-bentonite from aqueous solution. Chemical Engineering Journal, 240, 487–493.

    Article  CAS  Google Scholar 

  • Dong, L., Jin, Y., Song, T., Liang, J., Bai, X., Yu, S., Teng, C., Wang, X., Qu, J. & Huang, X.: 2017, Removal of Cr(VI) by surfactant modified Auricularia auricula spent substrate: biosorption condition and mechanism, pp. 17626-17641.

  • Espinoza-Sánchez, M. A., Arévalo-Niño, K., Quintero-Zapata, I., Castro-González, I., & Almaguer-Cantú, V. (2019). Cr(VI) adsorption from aqueous solution by fungal bioremediation based using Rhizopus sp. Journal of Environmental Management, 251, 109595.

    Article  Google Scholar 

  • General Administration of Quality Supervision, I. a. Q. o. t. P. s. R. o. C.: 2017, Standard for groundwater quality (GB/T 14848–2017).

  • Huang, Y., Ma, X., Liang, G., & Yan, H. (2008). Adsorption of phenol with modified rectorite from aqueous solution. Chemical Engineering Journal, 141, 1–8.

    Article  CAS  Google Scholar 

  • Kakavandi, B., Kalantary, R. R., Farzadkia, M., Mahvi, A. H., Esrafili, A., Azari, A., Yari, A. R. & Javid, A. B.: 2014, 'Enhanced chromium (VI) removal using activated carbon modified by zero valent iron and silver bimetallic nanoparticles'.

    Book  Google Scholar 

  • Khormaei, M., Nasernejad, B., Edrisi, M., & Eslamzadeh, T. (2007). Copper biosorption from aqueous solutions by sour orange residue. Journal of Hazardous Materials, 149, 269–274.

    Article  CAS  Google Scholar 

  • Krajnak, A., Viglasova, E., Galambos, M. & Krivosudsky, L.: 2017, Application of HDTMA-intercalated bentonites in water waste treatment for U(VI) removal, pp. 2489-2499.

  • Kucic, D., Simonic, M. & Furac, L.: 2017, Batch adsorption of Cr(VI) ions on zeolite and agroindustrial waste, pp. 497-507.

  • Kumar, J. A., Amarnath, D. J., Sathish, S., Jabasingh, S. A., Saravanan, A., Hemavathy, R. V., Anand, K. V., & Yaashikaa, P. R. (2019). Enhanced PAHs removal using pyrolysis-assisted potassium hydroxide induced palm shell activated carbon: batch and column investigation. Journal of Molecular Liquids, 279, 77–87.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of solution substances. Handlinger, 24.

  • Langmuir, I. (1917). The constitution and fundamental properties of solids and liquids: II. Liquids. Journal of the American Chemical Society, 39, 58.

    Article  Google Scholar 

  • Li, J.-S., Xue, Q., Wang, P., & Zhang, T.-T. (2015). Enhanced washing for Cr(VI) removal from contaminated soil using EDTA and microwave radiation. Environmental Earth Sciences, 2167.

  • Liu, D., Ping, C., Xiao, L., Jin, S., Xu, W., & Zou, B. (2016). Study on disposal of chromium wastewater and remediation of chromium-contaminated soil by organo-bentonite. Inorganic Chemicals Industry, 35.

  • Lyu, H., Tang, J., Huang, Y., Gai, L., Zeng, E. Y., Liber, K., & Gong, Y. (2017). Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chemical Engineering Journal, 322, 516–524.

    Article  CAS  Google Scholar 

  • Majdan, M., Maryuk, O., Pikus, S., Olszewska, E., Kwiatkowski, R., & Skrzypek, H. (2005). Equilibrium, FTIR, scanning electron microscopy and small wide angle X-ray scattering studies of chromates adsorption on modified bentonite. Journal of Molecular Structure, 740, 203–211.

    Article  CAS  Google Scholar 

  • Meng, J., Feng, X., Dai, Z., Liu, X., Wu, J., & Xu, J. (2014). Adsorption characteristics of Cu(II) from aqueous solution onto biochar derived from swine manure. Environmental Science and Pollution Research, 7035.

  • Obiri-Nyarko, F., Grajales-Mesa, S. J., & Malina, G. (2014). An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere, 111, 243–259.

    Article  CAS  Google Scholar 

  • Park, Y., Sun, Z., Ayoko, G. A., & Frost, R. L. (2014). Removal of herbicides from aqueous solutions by modified forms of montmorillonite. Journal of Colloid and Interface Science, 415, 127–132.

    Article  CAS  Google Scholar 

  • Putro, J. N., Santoso, S. P., Ismadji, S., & Ju, Y.-H. (2017). Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose—bentonite nanocomposite: improvement on extended Langmuir isotherm model. Microporous and Mesoporous Materials, 246, 166–177.

    Article  CAS  Google Scholar 

  • Rodrigues, E., Almeida, O., Brasil, H., Moraes, D., & dos Reis, M. A. L. (2019). Adsorption of chromium (VI) on hydrotalcite-hydroxyapatite material doped with carbon nanotubes: equilibrium, kinetic and thermodynamic study. Applied Clay Science, 172, 57–64.

    Article  CAS  Google Scholar 

  • Salem, F. Y., Parkerton, T. F., Lewis, R. V., Huang, J. H., & Dickson, K. L. (1989). Kinetics of chromium transformations in the environment. Science of the Total Environment, 86, 25–41.

    Article  Google Scholar 

  • Sawada, A., Mori, K.-i., Tanaka, S., Fukushima, M., & Tatsumi, K. (2004). Removal of Cr(VI) from contaminated soil by electrokinetic remediation. Waste Management, 24, 483–490.

    Article  CAS  Google Scholar 

  • Selvi, K., Pattabhi, S., & Kadirvelu, K. (2001). Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon. Bioresource Technology, 80, 87–89.

    Article  CAS  Google Scholar 

  • Senturk, H. B., Ozdes, D., Gundogdu, A., Duran, C., & Soylak, M. (2009). Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: equilibrium, kinetic and thermodynamic study. Journal of Hazardous Materials, 172, 353–362.

    Article  CAS  Google Scholar 

  • Shen, Z., Jin, F., Wang, F., McMillan, O., & Al-Tabbaa, A. (2015). Sorption of lead by Salisbury biochar produced from British broadleaf hardwood (p. 553). Amsterdam: Elsevier Science B.V.

    Google Scholar 

  • Shu, Y., Li, L., Zhang, Q., & Wu, H. (2010). Equilibrium, kinetics and thermodynamic studies for sorption of chlorobenzenes on CTMAB modified bentonite and kaolinite. Journal of Hazardous Materials, 173, 47–53.

    Article  CAS  Google Scholar 

  • Sivarajasekar, N., Mohanraj, N., Baskar, R. & Sivamani, S.: 2018, Fixed-bed adsorption of ranitidine hydrochloride onto microwave assisted-activated Aegle marmelos Correa fruit shell: statistical optimization and breakthrough modelling, pp. 2205-2215.

  • Song, M., Wei, Y., Cai, S., Yu, L., Zhong, Z., & Jin, B. (2018). Study on adsorption properties and mechanism of Pb2+ with different carbon based adsorbents (p. 1416). Amsterdam: Elsevier science B.V.

    Google Scholar 

  • Stathi, P., Litina, K., Gournis, D., Giannopoulos, T. S., & Deligiannakis, Y. (2007). Physicochemical study of novel organoclays as heavy metal ion adsorbents for environmental remediation. Journal of Colloid and Interface Science, 316, 298–309.

    Article  CAS  Google Scholar 

  • USEPA. (1999). Field applications of in situ remediation technologies [microform]: permeable reactive barriers, Washington DC : U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. Technology Innovation Office, 1999.

  • Wang, Y.-Q., Zhang, Z.-b., Li, Q. & Liu, Y.-H.: 2012, Adsorption of thorium from aqueous solution by HDTMA(+)-pillared bentonite, pp. 519-528.

  • Wu, L., Liao, L., Lv, G., Qin, F., He, Y., & Wang, X. (2013). Micro-electrolysis of Cr (VI) in the nanoscale zero-valent iron loaded activated carbon. Journal of Hazardous Materials, 254-255, 277–283.

    Article  CAS  Google Scholar 

  • Zhang, Y., Jin, F., Shen, Z., Lynch, R., & Al-Tabbaa, A. (2018). Kinetic and equilibrium modelling of MTBE (methyl tert-butyl ether) adsorption on ZSM-5 zeolite: batch and column studies. Journal of Hazardous Materials, 347, 461–469.

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhao, Y., Zhu, Y., Wu, H., Wang, H., & Lu, W. (2012). Adsorption of mixed cationic-nonionic surfactant and its effect on bentonite structure. Journal of Environmental Sciences, 24, 1525–1532.

    Article  CAS  Google Scholar 

  • Zhao, L., Zhao, Y., Yang, B. & Teng, H.: 2019, Application of carboxymethyl cellulose-stabilized sulfidated nano zerovalent iron for removal of Cr(VI) in simulated groundwater.

    Book  Google Scholar 

  • Zhao, Y., Yang, S., Ding, D., Chen, J., Yang, Y., Lei, Z., Feng, C., & Zhang, Z. (2013). Effective adsorption of Cr (VI) from aqueous solution using natural Akadama clay. Journal of Colloid and Interface Science, 395, 198–204.

    Article  CAS  Google Scholar 

  • Zhou, W., & Zhu, L. (2005). Distribution of polycyclic aromatic hydrocarbons in soil-water system containing a nonionic surfactant. Chemosphere, 1237.

  • Zhu, J., Qing, Y., Wang, T., Zhu, R., Wei, J., Tao, Q., Yuan, P., & He, H. (2011). Preparation and characterization of zwitterionic surfactant-modified montmorillonites. Journal of Colloid and Interface Science, 360, 386–392.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are also grateful to the experimental instruments offered by Ministry of Ecology and Environment Nanjing Institute of Environmental Sciences.

Funding

This study is supported by the National Natural Science Foundation (No. 51978157), the Fundamental Research Funds for the Central Universities (No. 2242019 K40211) and National Key R&D Program of China (2018YFC1803100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangqi Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Xu, W., Xu, Z. et al. CTMAB-Modified Bentonite–Based PRB in Remediating Cr(VI) Contaminated Groundwater. Water Air Soil Pollut 231, 20 (2020). https://doi.org/10.1007/s11270-019-4386-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4386-4

Keywords

Navigation