Skip to main content
Log in

An Experimental Application of Four Types of Chitosan Bead for Removal of Cationic and Anionic Pollutants

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Four types of chitosan bead (CB) were tested to find the removal efficiency for cation and anion from solution. Hydrogel chitosan bead (HCB) was first prepared and then modified by chemical and physical treatment. Both the Cu(II) and phosphate removal were investigated based on the batch removal efficiency, a pH test, kinetics, and an isotherm test. For Cu(II) application, the highest Cu(II) uptake (approximately 83%) was obtained for the HCB; the modification by crosslinking by glutaraldehyde (GA) and air drying decreased this to approximately 60%, while phosphate removal was not affected by crosslinking and drying. Below pH 4.0, the removal efficiency of Cu(II) was decreased by approximately 20% for all type of CB, while phosphate uptake was determined by the type of CB, regardless of the initial pH. The maximum Cu(II) and phosphate uptake (Q) were 129 and 232 mg/g for the HCB and dried chitosan bead (DCB), respectively. The phosphate sorption rate was faster than Cu(II) at the beginning of the reaction for the hydrogel bead, while the dried bead reached the equilibrium in 72 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal, R., & Gupta, M. N. (1995). Evaluation of glutaraldehyde-modified chitosan as a matrix for hydrophobic interaction chromatography. Analytica Chimica Acta, 313, 253–257.

    CAS  Google Scholar 

  • An, B., Jung, K. Y., Lee, S. H., Lee, S., & Choi, J. W. (2014a). Effective phosphate removal from synthesized wastewater using copper-chitosan bead: batch and fixed-bed column studies. Water Air Soil Pollution, 225, 2050.

    Google Scholar 

  • An, B., Jung, K. Y., Zhao, D., Lee, S. H., & Choi, J. W. (2014b). Preparation and characterization of polymeric ligand exchanger based on chitosan hydrogel for selective removal of phosphate. Reactive and Functional Polymers, 85, 45–53.

    CAS  Google Scholar 

  • Cegłowski, M., Gierczyk, B., Frankowski, M., & Popenda, L. (2018). A new low-cost polymeric adsorbents with polyamine chelating groups for efficient removal of heavy metal ions from water solutions. Reactive and Functional Polymers, 131, 64–74.

    Google Scholar 

  • Chang, X., Chen, D., & Jiao, X. (2008). Chitosan-based aerogels with high adsorption performance. Journal of Physical Chemistry B, 112(26), 7721–7725.

    CAS  Google Scholar 

  • Chen, F., Wu, Q., Lü, Q., Xu, Y., & Yu, Y. (2015). Synthesis and characterization of bifunctional mesoporous silica adsorbent for simultaneous removal of lead and nitrate ions. Separation and Purification Technology, 151, 225–231.

    CAS  Google Scholar 

  • Chiou, M. S., & Li, H. Y. (2002). Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan bead. Journal of Hazardous Materials, 93, 233–248.

    CAS  Google Scholar 

  • Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., & Likens, G. E. (2009). Controlling eutrophication: Nitrogen and phosphorus. Science, 323, 1014–1015.

    CAS  Google Scholar 

  • Denizli, A., Say, R., Patır, S., & Arıca, M. Y. (2000). Adsorption of heavy metal ions onto ethylene diamine-derived and cibacron blue F3GA-incorporated microporous poly(2-hydroxyethyl methacrylate) membranes. Reactive functional Polymers, 43, 17–24.

    CAS  Google Scholar 

  • Domard, A. (1987). Determination of N-acetyl content in chitosan samples by c.d. measurements. International Journal of Biological Macromolecules, 9, 333–336.

    CAS  Google Scholar 

  • Gerente, C., Andres, Y., McKay, G., & Le Cloirec, P. (2010). Removal of arsenic(V) onto chitosan: From sorption mechanism explanation to dynamic water treatment process. Chemical Engineering Journal, 158, 593–598.

    CAS  Google Scholar 

  • Guibal, E. (2004). Interactions of metal ions with chitosan-based sorbents: A review. Separation and Purification Technology, 38, 43–74.

    CAS  Google Scholar 

  • Guibal, E., Milot, C., & Tobin, J. M. (1998). Metal-anion sorption by chitosan beads: Equilibrium and kinetic studies. Industrial and Engineering Chemistry Research, 37, 1454–1463.

    Google Scholar 

  • He, Y., Lin, H., Dong, Y., Liu, Q., & Wang, L. (2016). Simultaneous removal of ammonium and phosphate by alkaline-activated and lanthanum-impregnated zeolite. Chemosphere., 164, 387–395.

    CAS  Google Scholar 

  • Hu, Y. N., & Cheng, H. F. (2013). Water pollution during China’s industrial transition. Environmental Development, 8, 57–73.

    Google Scholar 

  • Ishii, T., Sorita, A., Sawamura, M., Kusunose, H., & Ukeda, H. (1997). Determination of the reaction-product of glutaraldehyde and amine based on the binding ability of Coomassie brilliant blue. Analytical Sciences, 13, 5–9.

    CAS  Google Scholar 

  • Jabli, M., Baouab, M. H. V., Sintes-Zydowicz, N., & Hassine, B. B. (2011). Dye molecules/copper(II)/macroporous glutaraldehyde-chitosan microspheres complex: Surface characterization, kinetic, and thermodynamic investigations. Journal of Applied Polymer Science, 123, 3412–3424.

    Google Scholar 

  • Jo, H. J., Choi, J. W., Lee, S. H., & Hong, S. W. (2012). Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: The importance of their dissolved fraction varying with preparation methods. Journal of Hazardous Materials, 227–228, 301–308.

    Google Scholar 

  • Kannamba, B., Reddy, K. L., & AppaRao, B. V. (2010). Removal of cu(II) from aqueous solutions using chemically modified chitosan. Journal of Hazardous Materials, 175, 939–948.

    CAS  Google Scholar 

  • Kildeeva, N. R., Perminov, P. A., Vladimirov, L. V., Novikov, V. V., & Mikhailov, S. N. (2009). About mechanism of chitosan cross-linking with glutaraldehyde. Russian Journal of Bioorganic Chemistry, 35(3), 397–407.

    CAS  Google Scholar 

  • Kim, H., Choi, J. W., Kim, T. H., Park, J. S., & An, B. (2018). Effect of TSS removal from stormwater by mixed media column on T-N, T-P, and organic material removal. Water, 10(8), 1069.

    Google Scholar 

  • Li, B., Shan, C. L., Zhou, Q., Fang, Y., Wang, Y. L., Xu, F., Han, L. R., Ibrahim, M., Guo, L. B., Xie, G. L., & Sun, G. C. (2013). Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Marine Drugs, 11, 1534–1552.

    CAS  Google Scholar 

  • Liu, X., & Zhang, L. (2015). Removal of phosphate anions using the modified chitosan beads: Adsorption kinetic, isotherm and mechanism studies. Powder Technolog, 277, 112–119.

    CAS  Google Scholar 

  • Liu, Y., Yan, C., Zhao, J., Zhang, Z., Wang, H., Zhou, S., & Wu, L. (2018). Synthesis of zeolite P1 from fly ash under solven-free conditions for ammonium removal from water. Journal of Cleaner Production., 202, 11–22.

    CAS  Google Scholar 

  • Malwal, D., & Gopinath, P. (2017). Silica stabilized magnetic-chitosan beads for removal of arsenic from water. Colloid and Interface Science Communications., 19, 14–19.

    CAS  Google Scholar 

  • Modrezejewska, Z. (2013). Sorption mechanism of copper in chitosan hydrogel. Reactive Functional Polymers, 73, 719–726.

    Google Scholar 

  • Monteiro Jr., O. A. C., & Airoldi, C. (1999). Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system. International Journal of Biological Macromolecules, 26, 119–128.

    CAS  Google Scholar 

  • Noel, S. P., Courtney, H. S., Bumgardner, J. D., & Haggard, W. O. (2010). Chitosan sponges to locally deliver amikacin and vancomycin: A pilot in vitro evaluation. Clinical Orthopaedics and Related Research, 468(8), 2074–2080.

    Google Scholar 

  • Osman, Z., & Arof, A. K. (2003). FTIR studies of chitosan acetate based polymer electrolytes. Electrochimica Acta, 48, 993–999.

    CAS  Google Scholar 

  • Papageorgiou, S. K., Katsaros, F. K., Kouvelos, E. P., Nolan, J. W., Le Deit, H., & Kanellopoulos, N. K. (2006). Heavy metal sorption by calcium alginate beads from Laminaria digitata. Journal of Hazard Materials., 137(3), 1765–1772.

    CAS  Google Scholar 

  • Pillai, C. K. S., Paul, W., & Sharma, C. P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 34(7), 641–678.

    CAS  Google Scholar 

  • Piron, E., & Domarda, A. (1998). Interaction between chitosan and uranyl ions. Part 2. Mechanism of interaction. International Journal of Biological Macromolecules, 22(1), 33–40.

    CAS  Google Scholar 

  • Poon, L., Wilson, L. D., & Headley, J. V. (2014). Chitosan-glutaraldehyde copolymers and their sorption properties. Carbohydrate Polymers, 109, 92–101.

    CAS  Google Scholar 

  • Queiroz, M. F., Melo, K. R. T., Sabry, D. A., Sassaki, G. L., & Rocha, H. A. O. (2015). Does the use of chitosan contribute to oxalate kidney stone formation? Marine Drugs, 13, 141–158.

    Google Scholar 

  • Rajeswari, A., Amalraj, A., & Pius, A. (2015). Removal of phosphate using chitosan-polymer composites. Journal of Environmental Chemical Engineering, 3, 2331–2341.

    CAS  Google Scholar 

  • Sampaio, R. M. M., Timmers, R. A., Xu, Y., Keesman, K. J., & Lens, P. N. L. (2009). Selective precipitation of cu from Zn in a Ps controlled continuously stirred tank reactor. Journal of Hazardous Materials, 165, 256–265.

    CAS  Google Scholar 

  • Schindler, D. W. (1974). Eutrophication and recovery in experimental lakes: Implications for lake management. Science, 184, 897–899.

    CAS  Google Scholar 

  • Shah, B., & Chudasama, U. (2014). Synthesis and characterization of a novel hybrid material as amphoteric ion exchanger for simultaneous removal of cations and anions. Journal of Hazardous Materials, 276, 138–148.

    CAS  Google Scholar 

  • Sorvari, J., & Sillanpää, M. (1996). Influence of metal complex formation on heavy metal and free EDTA and DTPA acute toxicity determined by Daphnia magna. Chemosphere, 33(6), 1119–1127.

    CAS  Google Scholar 

  • Stoll, A., & Duncan, J. R. (1996). Enhanced heavy metal removal from waste water by viable, glucose pretreated Saccharomyces cerevisiae cells. Biotechnology Letters, 18(10), 1209–1212.

    CAS  Google Scholar 

  • Thakur, V. K., & Voicu, S. I. (2016). Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydrate Polyhmers, 146, 148–165.

    CAS  Google Scholar 

  • USEPA, EPA440/5–86-001, Washington, DC, 1986.

  • Verbych, S., Bryk, M., Chornokur, G., & Fuhr, B. (2005). Removal of copper (II) from aqueous solutions by chitosan adsorption. Separation Science and Technology, 40, 1749–1759.

    CAS  Google Scholar 

  • Wan Ngah, W. S., Endud, C. S., & Mayanar, R. (2002). Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. Reactive and Functional Polymer, 50(2), 181–190.

    Google Scholar 

  • Wang, Q. Z., Chen, X. G., Liu, N., Wang, S. X., Liu, C. S., Meng, X. H., & Liu, C. G. (2006). Protonation constants of chitosan with different molecular weight and degree of deacetylation. Carbohydrate Polymers, 65, 194–201.

    CAS  Google Scholar 

  • Wang, J. J., Zeng, Z. W., Xiao, R. Z., Xie, T., Zhou, G. L., Zhan, X. R., & Wang, S. L. (2011). Recent advances of chitosan nanoparticles as drug carriers. International Journal of Nanomedicine, 6, 765–774.

    CAS  Google Scholar 

  • Wu, Q., Chen, F., Xu, Y., & Yu, Y. (2015). Simultaneous removal of cations and anions from waste water by bifunctional mesoporous silica. Applied Surface Science, 351, 155–163.

    CAS  Google Scholar 

  • Xie, Y. L., Wang, M. J., & Yao, S. J. (2009). Preparation and characterization of biocompatible microcapsules of sodium cellulose sulfate/chitosan by means of layer-by-layer self-assembly. Langmuir., 25(16), 8999–9005.

    CAS  Google Scholar 

  • Zhao, F., Yu, B., Yue, Z., Wang, T., Wen, X., Liu, Z., & Zhao, C. (2007). Preparation of porous chitosan gel beads for copper(II) ion adsorption. Journal of Hazardous Materials, 147, 67–73.

    CAS  Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2016R1D1A1B03930265) and the Korea Ministry of Environment as a “Global Top Project” (Project No.: 2016002190003). This work was also supported by the Technology Innovation Program (10082572, Development of Low Energy Desalination Water Treatment Engineering Package System for Industrial Recycle Water Production) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Woo Choi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, B., Choi, JW. An Experimental Application of Four Types of Chitosan Bead for Removal of Cationic and Anionic Pollutants. Water Air Soil Pollut 230, 314 (2019). https://doi.org/10.1007/s11270-019-4365-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4365-9

Keywords

Navigation