Skip to main content
Log in

Potential Use of a Pathogenic Yeast Pichia kluyveri FM012 for Degradation of Dichlorodiphenyltrichloroethane (DDT)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Many organochlorine pesticides (OCPs) are considerably high toxic, and have bioaccumulation potential and chronic adverse impact on both wildlife and human. This study focuses on the fate and metabolic degradation, which is the potential to be more efficient, economic, and safe compared to the aforementioned conventional methods. By these positive attributes, the present work then investigates the capability of newly isolated pathogenic yeast Pichia kluyveri FM012 for biodegradation of DDT in aquatic culture. Pichia kluyveri FM012 mycelia were cultured in a mineral liquid medium consisting of the solution of DDT (40 mg/l) with some experimental conditions such as the initial pH of the culture (5–8), agitation speed (0–150 rpm), and various carbon and nitrogen sources. The highest biodegradation of DDT by Pichia kluyveri FM012 was shown in the culture with pH 5 and 150 rpm agitation. Moreover, the use of glucose and yeast offers the best performance for the degradation compared to other carbon and nitrogen sources. The highest enzyme activity during the decolorization process was dioxygenase. Fourier-transform infrared spectroscopy (FTIR), UV-Vis spectrophotometer, and GC-MS profile showed that the transformation of DDT has occurred. The present DDE and DDD as metabolites of DDT were confirmed by GCMS at a retention time of 17.8 and 16.6 min. The outcomes of this study have several important implications for future practice, for instance in providing an alternative biodegradation agent to remove some organochlorine pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adnan, L. A., Mohd Yusoff, A. R., Hadibarata, T., & Khudhair, A. B. (2014). Biodegradation of Bis-Azo Dye Reactive Black 5 by white-rot fungus Trametes gibbosa sp. WRF 3 and its metabolite characterization. Water, Air, & Soil Pollution, 225, 2119.

    Google Scholar 

  • Akar, S. T., Gorgulu, A., Anilan, B., Kaynak, Z., & Akar, T. (2009). Investigation of the biosorption characteristics of lead(II) ions onto Symphoricarpus albus: batch and dynamic flow studies. Journal of Hazardous Materials, 165, 126–133.

    CAS  Google Scholar 

  • Barragán-Huerta, B. E., Costa-Pérez, C., Peralta-Cruz, J., Barrera-Cortés, J., Esparza-García, F., & Rodríguez-Vázquez, R. (2007). Biodegradation of organochlorine pesticides by bacteria grown in microniches of the porous structure of green bean coffee. International Biodeterioration & Biodegradation, 59, 239–244.

    Google Scholar 

  • Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V., & Sharma, K. D. (2015). Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Brazilian Journal of Microbiology, 46, 7–21.

    CAS  Google Scholar 

  • Boyle, C. D., Kropp, B. R., & Reid, I. D. (1992). Solubilization and mineralization of lignin by white rot fungi. Applied and Environmental Microbiology, 58, 3217–3224.

    CAS  Google Scholar 

  • Chandra, R., & Abhishek, A. (2011). Bacterial decolorization of black liquor in axenic and mixed condition and characterization of metabolites. Biodegradation, 22, 603–611.

    CAS  Google Scholar 

  • Dellamatrice, P. M., Silva-Stenico, M. E., Moraes, L. A., Fiore, M. F., & Monteiro, R. T. (2017). Degradation of textile dyes by cyanobacteria. Brazilian Journal of Microbiology., 48, 25–31.

    Google Scholar 

  • dos Santos, A. B., Cervantes, F. J., & van Lier, J. B. (2007). Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresource Technology, 98, 2369–2385.

    Google Scholar 

  • El-Temsah, Y. S., Sevcu, A., Bobcikova, K., Cernik, M., & Joner, E. J. (2016). DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere, 144, 2221–2228.

    CAS  Google Scholar 

  • Elumalai, P., Parthipan, P., Karthikeyan, O. P., & Rajasekar, A. (2017). Enzyme-mediated biodegradation of long-chain n-alkanes (C32 and C40) by thermophilic bacteria. 3 Biotech, 7, 116.

    Google Scholar 

  • Fang, H., Zhou, W., Cao, Z., Tang, F., Wang, D., Liu, K., Wu, X., Yang, X., Sun, Y., & Yu, Y. (2012). Combined remediation of DDT congeners and cadmium in soil by Sphingobacterium sp. D-6 and Sedum alfredii Hance. Journal of Environmental Science (China), 24, 1036–1046.

    CAS  Google Scholar 

  • Gohil, H., Ogram, A., & Thomas, J. (2014). Stimulation of anaerobic biodegradation of DDT and its metabolites in a muck soil: laboratory microcosm and mesocosm studies. Biodegradation, 25, 633–642.

    CAS  Google Scholar 

  • Hadibarata, T., Khudhair, A. B., & Salim, M. R. (2012). Breakdown products in the metabolic pathway of anthracene degradation by a Ligninolytic fungus Polyporus sp. S133. Water, Air, & Soil Pollution, 223, 2201–2208.

    CAS  Google Scholar 

  • Hadibarata, T., & Kristanti, R. A. (2013). Biodegradation and metabolite transformation of pyrene by basidiomycetes fungal isolate Armillaria sp. F022. Bioprocess and Biosystems Engineering, 36, 461–468.

    CAS  Google Scholar 

  • Hadibarata, T., & Kristanti, R. A. (2014). Fluorene biodegradation and identification of transformation products by white-rot fungus Armillaria sp. F022. Biodegradation, 25, 373–382.

    CAS  Google Scholar 

  • Hadibarata, T., Tachibana, S., & Askari, M. (2011). Identification of metabolites from phenanthrene oxidation by phenoloxidases and dioxygenases of Polyporus sp. S133. Journal of Microbiology and Biotechnology, 21, 299–304.

    CAS  Google Scholar 

  • Hadibarata, T., Tachibana, S., & Itoh, K. (2007). Biodegradation of phenanthrene by fungi screened from nature. Pakistan Journal of Biological Sciences, 10, 2535–2543.

    CAS  Google Scholar 

  • Hsu-Kim, H., Kucharzyk, K. H., Zhang, T., & Deshusses, M. A. (2013). Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environmental Science & Technology, 47, 2441–2456.

    CAS  Google Scholar 

  • Jasinska, A., Paraszkiewicz, K., Sip, A., & Dlugonski, J. (2015). Malachite green decolorization by the filamentous fungus Myrothecium roridum—mechanistic study and process optimization. Bioresource Technology, 194, 43–48.

    CAS  Google Scholar 

  • Joutey, N. T., Sayel, H., Bahafid, W., & El Ghachtouli, N. (2015). Mechanisms of hexavalent chromium resistance and removal by microorganisms. Reviews of Environmental Contamination and Toxicology, 233, 45–69.

    CAS  Google Scholar 

  • Jung, C., Phal, N., Oh, J., Chu, K. H., Jang, M., & Yoon, Y. (2015). Removal of humic and tannic acids by adsorption-coagulation combined systems with activated biochar. Journal of Hazardous Materials, 300, 808–814.

    CAS  Google Scholar 

  • Karagunduz, A., Gezer, A., & Karasuloglu, G. (2007). Surfactant enhanced electrokinetic remediation of DDT from soils. Science and Total Environment, 385, 1–11.

    CAS  Google Scholar 

  • Kersten, P., & Cullen, D. (2007). Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Genetics and Biology, 44, 77–87.

    CAS  Google Scholar 

  • Kim, E. J., Kang, J. I., Tung, N. H., Kim, Y. H., Hyun, J. W., Koh, Y. S., Chang, W. Y., Yoo, E. S., & Kang, H. K. (2016). The effect of (1S,2S,3E,7E,11E)-3,7,11,15-Cembratetraen-17,2-Olide (LS-1) from Lobophyyum sp. on the apoptosis induction of SNU-C5 human colorectal cancer cells. Biomolecules & Therapeutics, 24, 623–629.

    CAS  Google Scholar 

  • Kirk, T. K., Schultz, E., Connors, W. J., Lorenz, L. F., & Zeikus, J. G. (1978). Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Archives of Microbiology, 117, 277–285.

    CAS  Google Scholar 

  • Liu, J., Li, E., You, X., Hu, C., & Huang, Q. (2016). Adsorption of methylene blue on an agro-waste oiltea shell with and without fungal treatment. Scientific Reports, 6, 38450.

    CAS  Google Scholar 

  • Ma, J., Pan, L. B., Yang, X. Y., Liu, X. L., Tao, S. Y., Zhao, L., Qin, X. P., Sun, Z. J., Hou, H., & Zhou, Y. Z. (2016). DDT, DDD, and DDE in soil of Xiangfen County, China: residues, sources, spatial distribution, and health risks. Chemosphere, 163, 578–583.

    CAS  Google Scholar 

  • Nor, N. M., Hadibarata, T., Zubir, M. M., Lazim, Z. M., Adnan, L. A., & Fulazzaky, M. A. (2015). Mechanism of triphenylmethane Cresol Red degradation by Trichoderma harzianum M06. Bioprocess and Biosystems Engineering, 38, 2167–2175.

    CAS  Google Scholar 

  • Pan, X., Lin, D., Zheng, Y., Zhang, Q., Yin, Y., Cai, L., Fang, H., & Yu, Y. (2016). Biodegradation of DDT by Stenotrophomonas sp. DDT-1: characterization and genome functional analysis. Scientific Reports, 6, 21332.

    CAS  Google Scholar 

  • Passarini, M. R., Rodrigues, M. V., da Silva, M., & Sette, L. D. (2011). Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Marine Pollution Bulletin, 62, 364–370.

    CAS  Google Scholar 

  • Perestelo, F., Falcón, M. A., Pérez, M. L., Corominas Roig, E., & de la Fuente Martin, G. (1989). Bioalteration of kraft pine lignin by Bacillus megaterium isolated from compost piles. Journal of Fermentation and Bioengineering, 68, 151–153.

    CAS  Google Scholar 

  • Piechocki, W., Gryglewicz, G., & Gryglewicz, S. (2009). Hydrodechlorination of DDT and chloroalkanes over carbon-supported Ni-Mo catalyst. Journal of Hazardous Materials, 163, 1397–1402.

    CAS  Google Scholar 

  • Qu, J., Xu, Y., Ai, G. M., Liu, Y., & Liu, Z. P. (2015). Novel Chryseobacterium sp. PYR2 degrades various organochlorine pesticides (OCPs) and achieves enhancing removal and complete degradation of DDT in highly contaminated soil. Journal of Environmental Management, 161, 350–357.

    CAS  Google Scholar 

  • Rahmat, N. A., Ali, A. A., Salmiati, Hussain, N., Muhamad, M. S., Kristanti, R. A. & Hadibarata, T. (2016). Removal of Remazol Brilliant Blue R from aqueous solution by adsorption using pineapple leaf powder and lime peel powder. Water Air & Soil Pollution., 227, 105.

  • Rodriguez-Couto, S. (2011). Production of laccase and decolouration of the textile dye Remazol Brilliant Blue R in temporary immersion bioreactors. Journal of Hazardous Materials, 194, 297–302.

    CAS  Google Scholar 

  • Sari, A. A., Tachibana, S., & Itoh, K. (2012). Determination of co-metabolism for 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) degradation with enzymes from Trametes versicolor U97. Journal of Bioscience and Bioengineering, 114, 176–181.

    CAS  Google Scholar 

  • Song, L., Shao, Y., Ning, S., & Tan, L. (2017). Performance of a newly isolated salt-tolerant yeast strain Pichia occidentalis G1 for degrading and detoxifying azo dyes. Bioresource Technology, 233, 21–29.

    CAS  Google Scholar 

  • Sudharshan, S., Naidu, R., Mallavarapu, M., & Bolan, N. (2012). DDT remediation in contaminated soils: a review of recent studies. Biodegradation, 23, 851–863.

    CAS  Google Scholar 

  • Verma, A. K., Raghukumar, C., Verma, P., Shouche, Y. S., & Naik, C. G. (2010). Four marine-derived fungi for bioremediation of raw textile mill effluents. Biodegradation, 21, 217–233.

    CAS  Google Scholar 

  • Wu, J., Xiao, Y.-Z., & Yu, H.-Q. (2005). Degradation of lignin in pulp mill wastewaters by white-rot fungi on biofilm. Bioresource Technology, 96, 1357–1363.

    CAS  Google Scholar 

  • Xiao, P., Mori, T., Kamei, I., Kiyota, H., Takagi, K., & Kondo, R. (2011). Novel metabolic pathways of organochlorine pesticides dieldrin and aldrin by the white rot fungi of the genus Phlebia. Chemosphere, 85, 218–224.

    CAS  Google Scholar 

  • Zheng, G., Selvam, A., & Wong, J. W. C. (2012). Oil-in-water microemulsions enhance the biodegradation of DDT by Phanerochaete chrysosporium. Bioresource Technology, 126, 397–403.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Deanship of Scientific Research at King Saud University through research group no. RG 1439-044 and by FRGS grant no. 4F813 of the Malaysian Ministry of Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Hadibarata.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isia, I., Hadibarata, T., Sari, A.A. et al. Potential Use of a Pathogenic Yeast Pichia kluyveri FM012 for Degradation of Dichlorodiphenyltrichloroethane (DDT). Water Air Soil Pollut 230, 221 (2019). https://doi.org/10.1007/s11270-019-4265-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4265-z

Keywords

Navigation