Skip to main content

Advertisement

Log in

Carbon Dioxide Sequestering Ability of Bacterial Carbonic Anhydrase in a Mangrove Soil Microcosm and Its Bio-mineralization Properties

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, we attempt to prospect potential bacterial isolates from mangrove sediments of Mangalavanam, Kerala, India, with positive carbonic anhydrase (CA) activity to sequester carbon dioxide by calcium precipitation process. Fifteen bacterial colonies (M1–M15) isolated were screened for their carbonic anhydrase enzyme production potential based on p-nitro phenol acetate assay. Based on the secondary screening, M3 and M8 were identified as the most potential for carbonic anhydrase production. The specific activity of the partially purified CA enzyme from M3 and M8 were 44 U mg−1 and 76 U mg−1 respectively. The enzyme activity increased by 1.6-fold upon precipitation by acetone (80%). The potential isolate which higher CA production, M8 was identified as Bacillus altitudinis based on 16S rDNA sequencing. Soil microcosm was established to study carbonic anhydrase production and CO2 sequestration ability of B. altitudinis M8 strain. B. altitudinis M8 strain could reduce CO2 by 75 ± 0.12% in microcosm composed of sterilized soil with bacteria (SSB) and by 97 ± 0.34% in microcosm with sterile soil with enzyme (SSE). Hence, the application of enzyme was found to be more effective in removing CO2 when compared to bacterial inoculum. To further understand the bio-mineralization ability of this microbial isolate, calcium precipitation assay was conducted. There was a reduction of 42.22 ± 0.23% of free calcium in the medium through calcite precipitation. The carbonic anhydrase-mediated calcium precipitation by B. altitudinis M8 strain could be effectively employed in the process of carbon dioxide sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abilash, P. (2015). Metagenomics of marine and mangrove sediments: phylogenetic diversity and characterization of amylase obtained by functional screening. PhD Thesis Cochin university of Science and Technology.

  • Achal, V., & Pan, X. (2011). Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Current Microbiology, 62(3), 894–902.

    Article  CAS  Google Scholar 

  • Allison, S. D. (2006). Brown ground: a soil carbon analogue for the green world hypothesis? The American Naturalist, 167(5), 619–627.

    Article  Google Scholar 

  • Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology and Molecular Biology Reviews, 59(1), 143–169.

    CAS  Google Scholar 

  • Azeez, P.A., Bhupathy, S., Rajasekaran, A., & Arun, P.R. (2004). Ecodevelopment plan for the Mangalavanam mangrove area, Ernakulam, Kerala. SACON Technical report No.62.

  • Azeez, P.A., Bhupathy, S., & Rajasekaran, A. (2006). The mangalavanam bird sanctuary/mangrove area, Ernakulam, Kerala. Report submitted Kerala Forest & Wildlife Department, Thiruvananthapuram.

  • Bansal, R., Dhami, N. K., Mukherjee, A., & Reddy, M. S. (2016). Biocalcification by halophilic bacteria for remediation of concrete structures in marine environment. Journal of Industrial Microbiology & Biotechnology, 43(11), 1497–1505.

    Article  CAS  Google Scholar 

  • Bardgett, R. D., Streeter, T. C., & Bol, R. (2003). Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands. Ecology, 84(5), 1277–1287.

    Article  Google Scholar 

  • Behera, B. C., Mishra, R. R., Patra, J. K., Sarangi, K., Dutta, S. K., & Thatoi, H. N. (2013). Impact of heavy metals on bacterial communities from mangrove soils of the Mahanadi Delta (India). Chemistry and Ecology, 29(7), 604–619.

    Article  CAS  Google Scholar 

  • Bergey, D. H., Krieg, N. R., & Holt, J. G. (1984). Bergey's manual of systematic bacteriology. Baltimore, MD: Williams & Wilkins.

    Google Scholar 

  • Bhagat, C., Tank, S., Ghelani, A., Dudhagara, P., & Patel, R. (2014). Bio remediation of CO2 and characterization of carbonic anhydrase from mangrove bacteria. Journal of Environmental Science and Technology, 7, 76–83.

    Article  CAS  Google Scholar 

  • Bhattacharya, A., Shrivastava, A., & Sharma, A. (2013). Evaluation of enhanced thermostability and operational stability of carbonic anhydrase from Micrococcus species. Applied Biochemistry and Biotechnology, 170(4), 756–773.

    Article  CAS  Google Scholar 

  • Billings, S. A., Lichter, J., Ziegler, S. E., Hungate, B. A., & Richter, D. D. B. (2010). A call to investigate drivers of soil organic matter retention vs. mineralization in a high CO2 world. Soil Biology and Biochemistry, 42(4), 665–668.

    Article  CAS  Google Scholar 

  • Braus-Stromeyer, S. A., Schnappauf, G., Braus, G. H., Gößner, A. S., & Drake, H. L. (1997). Carbonic anhydrase in Acetobacterium woodii and other acetogenic bacteria. Journal of Bacteriology, 179(22), 7197–7200.

    Article  CAS  Google Scholar 

  • Cañizo, A. N. D., Hours, R. A., Miranda, M. V., & Cascone, O. (1994). Fractionation of fungal pectic enzymes by immobilised metal ion affinity chromatography. Journal of the Science of Food and Agriculture, 64(4), 527–531.

    Article  Google Scholar 

  • Capasso, C., & Supuran, C. T. (2014). Sulfa and trimethoprim-like drugs–antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(3), 379–387.

    Article  CAS  Google Scholar 

  • Chapuis-Lardy, L. Y. D. I. E., Wrage, N., Metay, A., CHOTTE, J. L., & Bernoux, M. (2007). Soils, a sink for N2O? A review. Global Change Biology, 13(1), 1–17.

    Article  Google Scholar 

  • Coleman, J. E. (1967). Mechanism of action of carbonic anhydrase substrate, sulfonamide, and anion binding. Journal of Biological Chemistry, 242(22), 5212–5219.

    CAS  Google Scholar 

  • Costa, M., Borges, C. L., Bailao, A. M., Meirelles, G. V., Mendonça, Y. A., Dantas, S. F., de Faria, F. P., Felipe, M. S., Molinari-Madlum, E. E., Mendes-Giannini, M. J., & Fiuza, R. B. (2007). Transcriptome profiling of Paracoccidioides brasiliensis yeast-phase cells recovered from infected mice brings new insights into fungal response upon host interaction. Microbiology, 153(12), 4194–4207.

    Article  CAS  Google Scholar 

  • Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2014). Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization. Applied Biochemistry and Biotechnology, 172(5), 2552–2561.

    Article  CAS  Google Scholar 

  • Di Fiore, A., Alterio, V., Monti, S., De Simone, G., & D'Ambrosio, K. (2015). Thermostable carbonic anhydrases in biotechnological applications. International Journal of Molecular Sciences, 16(7), 15456–15480.

    Article  CAS  Google Scholar 

  • Dilustro, J. J., Collins, B., Duncan, L., & Crawford, C. (2005). Moisture and soil texture effects on soil CO2 efflux components in southeastern mixed pine forests. Forest Ecology and Management, 204(1), 87–97.

    Article  Google Scholar 

  • Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5), 293.

    Article  CAS  Google Scholar 

  • Dorodnikov, M., Blagodatskaya, E., Blagodatsky, S., Marhan, S., Fangmeier, A., & Kuzyakov, Y. (2009). Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size. Global Change Biology, 15(6), 1603–1614.

    Article  Google Scholar 

  • Faridi, S., & Satyanarayana, T. (2016a). Characteristics of recombinant α-carbonic anhydrase of polyextremophilic bacterium Bacillus halodurans TSLV1. International Journal of Biological Macromolecules, 89, 659–668.

  • Faridi, S., & Satyanarayana, T. (2016b). Novel alkalistable α-carbonic anhydrase from the polyextremophilic bacterium Bacillus halodurans: characteristics and applicability in flue gas CO2 sequestration. Environmental Science and Pollution Research, 23(15), 15236–15249.

  • Faridi, S., Bose, H., & Satyanarayana, T. (2017). Utility of immobilized recombinant carbonic anhydrase of Bacillus halodurans TSLV1 on the surface of modified iron magnetic nanoparticles in carbon sequestration. Energy and Fuels, 31(3), 3002–3009.

    Article  CAS  Google Scholar 

  • Ghoshal, D., Husic, H. D., & Goyal, A. (2002). Dissolved inorganic carbon concentration mechanism in Chlamydomonas moewusii. Plant Physiology and Biochemistry, 40(4), 299–305.

    Article  CAS  Google Scholar 

  • Giri, A., Banerjee, U. C., Kumar, M., & Pant, D. (2018). Intracellular carbonic anhydrase from Citrobacter freundii and its role in bio-sequestration. Bioresource Technology, 267, 789–792.

    Article  CAS  Google Scholar 

  • Gould, S. M., & Tawfik, D. S. (2005). Directed evolution of the promiscuous esterase activity of carbonic anhydrase II. Biochemistry, 44(14), 5444–5452.

    Article  CAS  Google Scholar 

  • Hu, G., Smith, K. H., Nicholas, N. J., Yong, J., Kentish, S. E., & Stevens, G. W. (2017). Enzymatic carbon dioxide capture using a thermally stable carbonic anhydrase as a promoter in potassium carbonate solvents. Chemical Engineering Journal, 307, 49–55.

    Article  CAS  Google Scholar 

  • Hu, G., Xiao, Z., Smith, K., Kentish, S., Stevens, G., & Connal, L. A. (2018). A carbonic anhydrase inspired temperature responsive polymer based catalyst for accelerating carbon capture. Chemical Engineering Journal, 332, 556–562.

    Article  CAS  Google Scholar 

  • Jayson, E.A., & Easa, P.S. (1999). Documentation of vertebrate fauna in Mangalavanam mangrove area. KFRI Research Report. 183, Kerala Forest research institute, Kerala.

  • Jo, B. H., Im, S. K., & Cha, H. J. (2018). Halotolerant carbonic anhydrase with unusual N-terminal extension from marine Hydrogenovibrio marinus as novel biocatalyst for carbon sequestration under high-salt environments. Journal of CO2 Utilization, 26, 415–424.

    Article  CAS  Google Scholar 

  • Joanisse, G. D., Bradley, R. L., Preston, C. M., & Munson, A. D. (2007). Soil enzyme inhibition by condensed litter tannins may drive ecosystem structure and processes: the case of Kalmia angustifolia. New Phytologist, 175(3), 535–546.

    Article  CAS  Google Scholar 

  • Kanbar, B., & Ozdemir, E. (2010). Thermal stability of carbonic anhydrase immobilized within polyurethane foam. Biotechnology Progress, 26(5), 1474–1480.

    Article  CAS  Google Scholar 

  • Kögel-Knabner, I., Matzner, E., Knickner, H., Kandeler, E., & Guggenberger, G. (1998). Structure and stability. Mitt. Dtsch. Bodenkdl. Ges, 87, 51–56.

    Google Scholar 

  • Komala, T., & Khun, T. C. (2014). Biological carbon dioxide sequestration potential of Bacillus pumilus. Sains Malaysiana, 43(8), 1149–1156.

    Google Scholar 

  • Kusian, B., Sültemeyer, D., & Bowien, B. (2002). Carbonic anhydrase is essential for growth of Ralstonia eutropha at ambient CO2 concentrations. Journal of Bacteriology, 184(18), 5018–5026.

    Article  CAS  Google Scholar 

  • Li, W., Liu, L.P., Zhou, P.P., Cao, L., Yu, L.J., & Jiang, S.Y. (2011). Calcite precipitation induced by bacteria and bacterially produced carbonic anhydrase. Current Science, 502-508.

  • Liang, J. I. N., Chang-Yi, L. U., Yong, Y. E., & Gong-Fu, Y. E. (2013). Soil respiration in a subtropical mangrove wetland in the Jiulong River estuary, China. Pedosphere, 23(5), 678–685.

    Article  Google Scholar 

  • López-Millán, A. F., Ellis, D. R., & Grusak, M. A. (2005). Effect of zinc and manganese supply on the activities of superoxide dismutase and carbonic anhydrase in Medicago truncatula wild type and raz mutant plants. Plant Science, 168(4), 1015–1022.

    Article  CAS  Google Scholar 

  • Lovelock, C. E., & Clough, B. F. (1992). Influence of solar radiation and leaf angle on leaf xanthophyll concentrations in mangroves. Oecologia, 91(4), 518–525.

    Article  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Ludwig, J., Meixner, F. X., Vogel, B., & Förstner, J. (2001). Soil-air exchange of nitric oxide: an overview of processes, environmental factors, and modeling studies. Biogeochemistry, 52(3), 225–257.

    Article  CAS  Google Scholar 

  • Muley, P., Dhumal, M., & Vora, D. (2014). Sequestration of atmospheric carbon dioxide by microbial carbonic anhydrase. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 8(11), 45–48.

    Article  Google Scholar 

  • Peet, K. C., & Thompson, J. R. (2015). Draft genome sequences of supercritical CO2-tolerant bacteria Bacillus subterraneus MITOT1 and Bacillus cereus MIT0214. Genome Announcements, 3(2), e00140–e00115.

    Article  Google Scholar 

  • Priya, J. N., & Kannan, M. (2017). Effect of carbonic anhydrase and urease on bacterial calcium carbonate precipitation. International Journal of Pharma and Bio Sciences, 8(3), 609–614.

    Article  CAS  Google Scholar 

  • Ramanan, R., Kannan, K., Sivanesan, S. D., Mudliar, S., Kaur, S., Tripathi, A. K., & Chakrabarti, T. (2009). Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii. World Journal of Microbiology and Biotechnology, 25(6), 981–987.

    Article  CAS  Google Scholar 

  • Ray, R., & Jana, T. K. (2017). Carbon sequestration by mangrove forest: one approach for managing carbon dioxide emission from coal-based power plant. Atmospheric Environment, 171, 149–154.

    Article  CAS  Google Scholar 

  • Salam, L. B., Ilori, M. O., & Amund, O. O. (2015). Carbazole degradation in the soil microcosm by tropical bacterial strains. Brazilian Journal of Microbiology, 46(4), 1037–1044.

    Article  CAS  Google Scholar 

  • Sanchez-Moral, S., Canaveras, J. C., Laiz, L., Sáiz-Jiménez, C., Bedoya, J., & Luque, L. (2003). Biomediated precipitation of calcium carbonate metastable phases in hypogean environments: a short review. Geomicrobiology Journal, 20(5), 491–500.

    Article  CAS  Google Scholar 

  • Schimel, J. P., Cleve, K. V., Cates, R. G., Clausen, T. P., & Reichardt, P. B. (1996). Effects of balsam poplar (Populus balsamifera) tannins and low molecular weight phenolics on microbial activity in taiga floodplain soil: Implications for changes in N cycling during succession. Canadian Journal of Botany, 74(1), 84–90.

    Article  CAS  Google Scholar 

  • Sebastian, P. A., Murugesan, S., Mathew, M. J., Sudhikumar, A. V., & Sunish, E. (2005). Spiders in Mangalavanam, an ecosensitive mangrove forest in Cochin, Kerala, India (Araneae). European Arachnology, 1, 315–318.

    Google Scholar 

  • Shi, W. Y., Yan, M. J., Zhang, J. G., Guan, J. H., & Du, S. (2014). Soil CO2 emissions from five different types of land use on the semiarid loess plateau of China, with emphasis on the contribution of winter soil respiration. Atmospheric Environment, 88, 74–82.

    Article  CAS  Google Scholar 

  • Silva-Castro, G.A., Uad, I., Gonzalez-Martinez, A., Rivadeneyra, A., Gonzalez-Lopez, J., & Rivadeneyra, M.A. (2015). Bioprecipitation of calcium carbonate crystals by bacteria isolated from saline environments grown in culture media amended with seawater and real brine. BioMed research international, 2015.

  • Snyder, C. S., Bruulsema, T. W., Jensen, T. L., & Fixen, P. E. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment, 133(3–4), 247–266.

    Article  CAS  Google Scholar 

  • Sundaram, S., & Thakur, I. S. (2015). Biosurfactant production by a CO2 sequestering Bacillus sp. strain ISTS2. Bioresource Technology, 188, 247–250.

    Article  CAS  Google Scholar 

  • Tu, C., Foster, L., Alvarado, A., McKenna, R., Silverman, D. N., & Frost, S. C. (2012). Role of zinc in catalytic activity of carbonic anhydrase IX. Archives of Biochemistry and Biophysics, 521(1–2), 90–94.

    Article  CAS  Google Scholar 

  • Victoria, M., Villarreal, F., Miras, I., Navaza, A., Haouz, A., González-Lebrero, R. M., Kaufman, S. B., & Zabaleta, E. (2009). Recombinant plant gamma carbonic anhydrase homotrimers bind inorganic carbon. FEBS Letters, 583(21), 3425–3430.

    Article  CAS  Google Scholar 

  • Weslien, P., Kasimir Klemedtsson, Å., Börjesson, G., & Klemedtsson, L. (2009). Strong pH influence on N2O and CH4 fluxes from forested organic soils. European Journal of Soil Science, 60(3), 311–320.

    Article  CAS  Google Scholar 

  • Williams, R. J. P. (1987). The biochemistry of zinc. Polyhedron, 6(1), 61–69.

    Article  CAS  Google Scholar 

  • Xiao, L., Lian, B., Hao, J., Liu, C., & Wang, S. (2015). Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values. Scientific Reports, 5, 7733.

    Article  CAS  Google Scholar 

  • Yadav, R. R., Krishnamurthi, K., Mudliar, S. N., Devi, S. S., Naoghare, P. K., Bafana, A., & Chakrabarti, T. (2014). Carbonic anhydrase mediated carbon dioxide sequestration: promises, challenges and future prospects. Journal of Basic Microbiology, 54(6), 472–481.

    Article  CAS  Google Scholar 

  • Yong, J. K., Stevens, G. W., Caruso, F., & Kentish, S. E. (2017). The resilience of carbonic anhydrase enzyme for membrane-based carbon capture applications. International Journal of Greenhouse Gas Control, 62, 122–129.

    Article  CAS  Google Scholar 

  • Zeena, R.P. (2005). Characterisation and distribution of amino acids in the mangrove sediments of Kochi. PhD thesis, Cochin University of Science and Technology, India.

Download references

Acknowledgments

The authors are grateful to the Director, National Institute of Oceanography (NIO), Goa and Scientist-in-charge, CSIR-NIO (Regional Centre), Kochi for their support and advice. NVK acknowledge the financial support of Science and Engineering Board (SERB), Government of India, through the National Post-Doctoral fellowship [PDF/2016/000438]. This is NIO contribution number 6423. Authors acknowledge Kerala Forest Research Institute (KFRI), Central Instrumentation Unit, Peechi for CHNS analysis, Sophisticated Test and Instrumentation Centre (STIC), Cochin University of Science and Technology for XRD and SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinod Kumar Nathan or Parvathi Ammini.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nathan, V.K., Ammini, P. Carbon Dioxide Sequestering Ability of Bacterial Carbonic Anhydrase in a Mangrove Soil Microcosm and Its Bio-mineralization Properties. Water Air Soil Pollut 230, 192 (2019). https://doi.org/10.1007/s11270-019-4229-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4229-3

Keywords

Navigation