Skip to main content

Advertisement

Log in

Assessment of Pyrethroid Pesticides in Topsoils in Northern Portugal

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Pyrethroid insecticides are emerging contaminants broadly used for insect pest control in agriculture, veterinary, and domestic applications. Limited information can be found in literature regarding pyrethroid pesticide soil contamination in playgrounds and agricultural areas. The focus of this study was on new findings related to the spatial and seasonal occurrence of pyrethroid pesticide contamination in soils of northern Portugal. The soils were tested during summer and winter seasons. Pyrethroid pesticides were not found in the ten playgrounds sampled during both seasons. For the 18 agricultural soil samples tested, deltamethrin was the only pyrethroid detected, just during the summer season. For those, three of the samples taken were found to be positive with concentrations between 15.7 and 101.7 ng g−1. The results denote the need for monitoring and assessment of pyrethroid pesticide contamination in Portuguese soil. Further research is needed to access the ecological potential impact of pyrethroid pesticides on soil.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akoto, O., Andoh, H., Darko, G., Eshun, K., & Osei-Fosu, P. (2013). Health risk assessment of pesticides residue in maize and cowpea from Ejura, Ghana. Chemosphere, 92(1), 67–73. https://doi.org/10.1016/j.chemosphere.2013.02.057.

    Article  CAS  Google Scholar 

  • Albaseer, S. S., Nageswara Rao, R., Swamy, Y. V., & Mukkanti, K. (2010). An overview of sample preparation and extraction of synthetic pyrethroids from water, sediment and soil. Journal of Chromatography A, 1217(35), 5537–5554. https://doi.org/10.1016/j.chroma.2010.06.058.

    Article  CAS  Google Scholar 

  • Albaseer, S. S., Rao, R. N., Swamy, Y. V., & Mukkanti, K. (2011). Analytical artifacts, sample handling and preservation methods of environmental samples of synthetic pyrethroids. Trac-Trends in Analytical Chemistry, 30(11), 1771–1780. https://doi.org/10.1016/j.trac.2011.05.010.

    Article  CAS  Google Scholar 

  • Aznar, R., Moreno-Ramon, H., Albero, B., Sanchez-Brunete, C., & Tadeo, J. L. (2017). Spatio-temporal distribution of pyrethroids in soil in Mediterranean paddy fields. Journal of Soils and Sediments, 17(5), 1503–1513. https://doi.org/10.1007/s11368-016-1417-2.

    Article  CAS  Google Scholar 

  • Bragança, I., Plácido, A., Paíga, P., Domingues, V. F., & Delerue-Matos, C. (2012). QuEChERS: a new sample preparation approach for the determination of ibuprofen and its metabolites in soils. [article]. Science of the Total Environment, 433, 281–289. https://doi.org/10.1016/j.scitotenv.2012.06.035.

    Article  CAS  Google Scholar 

  • Burns, C. J., & Pastoor, T. P. (2018). Pyrethroid epidemiology: a quality-based review. Critical Reviews in Toxicology, 48(4), 297–311. https://doi.org/10.1080/10408444.2017.1423463.

    Article  CAS  Google Scholar 

  • Chen, S., Gu, S., Wang, Y., Yao, Y., Wang, G., Jin, Y., et al. (2016). Exposure to pyrethroid pesticides and the risk of childhood brain tumors in East China. Environmental Pollution, 218, 1128–1134. https://doi.org/10.1016/j.envpol.2016.08.066.

    Article  CAS  Google Scholar 

  • Chen, Y. N., Zhang, J. Q., Zhang, F., Liu, X. P., & Zhou, M. (2018). Contamination and health risk assessment of PAHs in farmland soils of the Yinma River basin, China. Ecotoxicology and Environmental Safety, 156, 383–390. https://doi.org/10.1016/j.ecoenv.2018.03.020.

    Article  CAS  Google Scholar 

  • Correia-Sá, L., Fernandes, V. C., Carvalho, M., Calhau, C., Domingues, V. F., & Delerue-Matos, C. (2012). Optimization of QuEChERS method for the analysis of organochlorine pesticides in soils with diverse organic matter. Journal of Separation Science, 35(12), 1521–1530. https://doi.org/10.1002/jssc.201200087.

    Article  CAS  Google Scholar 

  • DGAV (n.d.). Serviço Nacional Avisos Agrícolas. http://snaa.dgav.pt/. Accessed 13 Aug 2018.

  • Domingues, V. F., Nasuti, C., Piangerelli, M., Correia-Sa, L., Ghezzo, A., Marini, M., et al. (2016). Pyrethroid pesticide metabolite in urine and microelements in hair of children affected by autism spectrum disorders: a preliminary investigation. International Journal of Environmental Research and Public Health, 13(4), 388.

    Article  Google Scholar 

  • Dubey, J. K., Patyal, S. K., & Sharma, A. (2018). Validation of QuEChERS analytical technique for organochlorines and synthetic pyrethroids in fruits and vegetables using GC-ECD. Environmental Monitoring and Assessment, 190(4). https://doi.org/10.1007/s10661-018-6584-8.

  • EN15662 (2008). Foods of plant origin—determination of pesticide residues using GC-MS and/or LC-MS/MS following acetonitrile extraction/partitioning and clean-up by dispersive SPE—QuEChERS. (Vol. EN 15662).

  • Esteve-Turrillas, F. A., Aman, C. S., Pastor, A., & de la Guardia, M. (2004). Microwave-assisted extraction of pyrethroid insecticides from soil. Analytica Chimica Acta, 522(1), 73–78. https://doi.org/10.1016/j.aca.2004.06.039.

    Article  CAS  Google Scholar 

  • European Union (2010). Guidance document on pesticide residue analytical methods. European Commision, Directorate General Health and ConsumerProtection.

  • European Committee for Standardization (2018). EN 15662 - Foods of plant origin - Multimethod for the determination of pesticide residues using GC- and LC-based analysis following acetonitrile extraction/partitioning and clean-up by dispersive SPE - Modular QuEChERS-method.

  • EU (2013). Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed. (Vol. SANCO/12571/2013): European commission, Health & consumer protection directorate-general.

  • Farina, Y., Abdullah, P. B., & Bibi, N. (2016). Extraction procedures in gas chromatographic determination of pesticides. Journal of Analytical Chemistry, 71(4), 339–350. https://doi.org/10.1134/S1061934816040092.

    Article  CAS  Google Scholar 

  • Feng, L., Yang, G., Zhu, L., Xu, J., Xu, X., & Chen, Y. (2015). Distribution and risk assessment of endocrine-disrupting pesticides in drinking water sources from agricultural watershed. Water, Air, & Soil Pollution, 227(1), 23. https://doi.org/10.1007/s11270-015-2704-z.

    Article  Google Scholar 

  • Fernandez-Alvarez, M., Llompart, M., Lamas, J. P., Lores, M., Garcia-Jares, C., Cela, R., et al. (2008). Simultaneous determination of traces of pyrethroids, organochlorines and other main plant protection agents in agricultural soils by headspace solid-phase microextraction-gas chromatography. Journal of Chromatography A, 1188(2), 154–163. https://doi.org/10.1016/j.chroma.2008.02.080.

    Article  CAS  Google Scholar 

  • Fuhrmann, A., Gans, O., Weiss, S., Haberhauer, G., & Gerzabek, M. H. (2014). Determination of bentazone, chloridazon and terbuthylazine and some of their metabolites in complex environmental matrices by liquid chromatography–electrospray ionization–tandem mass spectrometry using a modified QuEChERS method: an optimization and validation study. Water, Air, & Soil Pollution, 225(5), 1944. https://doi.org/10.1007/s11270-014-1944-7.

    Article  CAS  Google Scholar 

  • Gu, X.-z., Zhang, L., Zhang, G.-y., Fan, C.-x., & Chen, L. (2010). Preliminary evidence that copper and zinc inhibits the dissipation of synthetic pyrethroid in red soil. Water, Air, & Soil Pollution, 212(1), 345–355. https://doi.org/10.1007/s11270-010-0348-6.

    Article  CAS  Google Scholar 

  • Han, Y., Mo, R., Yuan, X., Zhong, D., Tang, F., Ye, C., et al. (2017). Pesticide residues in nut-planted soils of China and their relationship between nut/soil. Chemosphere, 180, 42–47. https://doi.org/10.1016/j.chemosphere.2017.03.138.

    Article  CAS  Google Scholar 

  • Hesse, P. R. (Ed.). (1972). A textbook of soil chemical analysis. New York: Chemical Publishing Co., Inc..

    Google Scholar 

  • Hołyńska-Iwan, I., Bogusiewicz, J., Chajdas, D., Szewczyk-Golec, K., Lampka, M., & Olszewska-Słonina, D. (2018). The immediate influence of deltamethrin on ion transport through rabbit skin. An in vitro study. Pesticide Biochemistry and Physiology, 148, 144–150. https://doi.org/10.1016/j.pestbp.2018.04.011.

    Article  CAS  Google Scholar 

  • Jabeen, F., Chaudhry, A. S., Manzoor, S., & Shaheen, T. (2015). Examining pyrethroids, carbamates and neonicotenoids in fish, water and sediments from the Indus River for potential health risks. Environmental Monitoring and Assessment, 187(2), 29. https://doi.org/10.1007/s10661-015-4273-4.

    Article  CAS  Google Scholar 

  • Ke, C. L., Gu, Y. G., & Liu, Q. (2017). Polycyclic aromatic hydrocarbons (PAHs) in exposed-lawn soils from 28 urban parks in the megacity Guangzhou: occurrence, sources, and human health implications. Archives of Environmental Contamination and Toxicology, 72(4), 496–504. https://doi.org/10.1007/s00244-017-0397-6.

    Article  CAS  Google Scholar 

  • Laidlaw, M. A. S., Gordon, C., & Ball, A. S. (2018). Preliminary assessment of surface soil lead concentrations in Melbourne, Australia. Environmental Geochemistry and Health, 40(2), 637–650. https://doi.org/10.1007/s10653-017-0010-y.

    Article  CAS  Google Scholar 

  • Li, X. H., Wang, W., Wang, J., Cao, X. L., Wang, X. F., Liu, H. C., et al. (2008). Contamination of soils with organochlorine pesticides in urban parks in Beijing, China. Chemosphere, 70(9), 1660–1668. https://doi.org/10.1016/j.chemosphere.2007.07.078.

    Article  CAS  Google Scholar 

  • Liu, J., Xie, J. M., Chu, Y. F., Sun, C., Chen, C. X., & Wang, Q. (2008). Combined effect of cypermethrin and copper on catalase activity in soil. Journal of Soils and Sediments, 8(5), 327–332. https://doi.org/10.1007/s11368-008-0029-x.

    Article  CAS  Google Scholar 

  • Lu, H. X., & Liu, W. G. (2015). Characterization and risk assessment of polychlorinated biphenyls in City Park soils of Xi’An, China. Bulletin of Environmental Contamination and Toxicology, 94(3), 393–398. https://doi.org/10.1007/s00128-015-1463-2.

    Article  CAS  Google Scholar 

  • Nasuti, C., Gabbianelli, R., Falcioni, M. L., Di Stefano, A., Sozio, P., & Cantalamessa, F. (2007). Dopaminergic system modulation, behavioral changes, and oxidative stress after neonatal administration of pyrethroids. Toxicology, 229(3), 194–205. https://doi.org/10.1016/j.tox.2006.10.015.

    Article  CAS  Google Scholar 

  • Nasuti, C., Carloni, M., Fedeli, D., Gabbianelli, R., Di Stefano, A., Laura Serafina, C., et al. (2013). Effects of early life permethrin exposure on spatial working memory and on monoamine levels in different brain areas of pre-senescent rats. Toxicology, 303(0), 162–168. https://doi.org/10.1016/j.tox.2012.09.016.

    Article  CAS  Google Scholar 

  • Nelson, D. W. a. L. E. S. (1996). Total carbon, organic carbon, and organic matter. In A. L. Page (Ed.), Methods of Soil Analysis, Part 2, 2 nd ed. (Agronomy 9 ed.) (pp. 961–1010). Madison: Am. Soc. of Agron., Inc..

    Google Scholar 

  • Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers in Public Health, 4, 148. https://doi.org/10.3389/fpubh.2016.00148.

    Article  Google Scholar 

  • Palmquist, K., Salatas, J., & Fairbrother, A. (2012). Pyrethroid insecticides: use, environmental fate, and ecotoxicology. In D. F. Perveen (Ed.), Insecticides – Advances in integrated Pest management. INTECH Open Access Publisher. http://www.intechopen.com/books/insecticides-advances-in-integrated-pest-management/pyrethroidinsecticides-use-environmental-fate-and-ecotoxicology. Accessed December 2008.

  • Pastor-Belda, M., Navarro-Jimenez, T., Garrido, I., Vinas, P., Campillo, N., Fenoll, J., et al. (2018). Magnetic solid-phase extraction or dispersive liquid-liquid microextraction for pyrethroid determination in environmental samples. Journal of Separation Science, 41(12), 2565–2575. https://doi.org/10.1002/jssc.201800109.

    Article  CAS  Google Scholar 

  • Pfeil, R. (2014). Pesticide Residues: Pyrethroids, in Encyclopedia of Food Safety, Yasmine Motarjemi, (Ed.). ISBN: 9780123786135, Waltham: Academic Press: 31-34.

  • Ponavic, M., Wittlingerova, Z., Coupek, P., & Buda, J. (2018). Soil geochemical mapping of the central part of Prague, Czech Republic. Journal of Geochemical Exploration, 187, 118–130. https://doi.org/10.1016/j.gexplo.2017.09.008.

    Article  CAS  Google Scholar 

  • Rambla-Alegre, M., Esteve-Romero, J., & Carda-Broch, S. (2012). Is it really necessary to validate an analytical method or not? That is the question. Journal of Chromatography A, 1232, 101–109. https://doi.org/10.1016/j.chroma.2011.10.050.

    Article  CAS  Google Scholar 

  • Soderlund, D. M. (2010). Toxicology and mode of action of pyrethroid insecticides. In R. Krieger (Ed.), Hayes' handbook of pesticide toxicology (third edition) (pp. 1665–1686). New York: Academic Press.

    Chapter  Google Scholar 

  • Vera, J., Correia-Sá, L., Paíga, P., Bragança, I., Fernandes Virgínia, C., Domingues Valentina, F., et al. (2013). QuEChERS and soil analysis. An overview. Sample Preparation, 1, 54.

    Article  Google Scholar 

  • Wahid, F. A., Wickliffe, J., Wilson, M., Van Sauers, A., Bond, N., Hawkins, W., et al. (2017). Presence of pesticide residues on produce cultivated in Suriname. Environmental Monitoring and Assessment, 189(6), 303. https://doi.org/10.1007/s10661-017-6009-0.

    Article  CAS  Google Scholar 

  • Wang, W., Delgado-Moreno, L., Conkle, J. L., Anderson, M., Amrhein, C., Ye, Q. F., et al. (2012). Characterization of sediment contamination patterns by hydrophobic pesticides to preserve ecosystem functions of drainage lakes. Journal of Soils and Sediments, 12(9), 1407–1418. https://doi.org/10.1007/s11368-012-0560-7.

    Article  CAS  Google Scholar 

  • Weston, D. P., Holmes, R. W., You, J., & Lydy, M. J. (2005). Aquatic toxicity due to residential use of pyrethroid insecticides. Environmental Science & Technology, 39(24), 9778–9784. https://doi.org/10.1021/es0506354.

    Article  CAS  Google Scholar 

  • Weston, D. P., Ding, Y., Zhang, M., & Lydy, M. J. (2013). Identifying the cause of sediment toxicity in agricultural sediments: the role of pyrethroids and nine seldom-measured hydrophobic pesticides. Chemosphere, 90(3), 958–964. https://doi.org/10.1016/j.chemosphere.2012.06.039.

    Article  CAS  Google Scholar 

  • Woudneh, M. B., & Oros, D. R. (2006). Pyrethroids, pyrethrins, and piperonyl butoxide in sediments by high-resolution gas chromatography/high-resolution mass spectrometry. Journal of Chromatography A, 1135(1), 71–77. https://doi.org/10.1016/j.chroma.2006.09.017.

    Article  CAS  Google Scholar 

  • Zhang, W., Jiang, F., & Ou, J. (2011). Global pesticide consumption and pollution: with China as a focus. Proceedings of the International Academy of Ecology and Environmental Sciences, 1(2), 125–144.

    CAS  Google Scholar 

Download references

Acknowledgments

I. Bragança is grateful to FCT for the doctoral research grant financed by fellowship (SFRH/BD/52504/2014). Paulo C. Lemos acknowledges the support by FCT/MCES for contract IF/01054/2014. The authors are greatly indebted to all financing sources.

Funding

This work was supported by the Associate Laboratory for Green Chemistry - LAQV which is financed by the national funds from FCT/MCTES (UID/QUI/50006/2013) and co-financed by the ERDF under the PT2020 Partnership Agreement (POCI-01-0145-FEDER - 007265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina F. Domingues.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

GC-ECD chromatograms of matrix blanks (non-spiked soil), SPs standards dissolved in n-hexane, SPs in soil spiked matrix. (PNG 245 kb)

High resolution image (TIF 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bragança, I., Lemos, P.C., Delerue-Matos, C. et al. Assessment of Pyrethroid Pesticides in Topsoils in Northern Portugal. Water Air Soil Pollut 230, 166 (2019). https://doi.org/10.1007/s11270-019-4209-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4209-7

Keywords

Navigation