Skip to main content
Log in

Distribution, Geochemical Speciation, and Bioavailable Potencies of Cadmium, Copper, Lead, and Zinc in Sediments from Urban Coastal Environment in Osaka Bay, Japan

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Due to proximity to the urban and industrial areas, coastal environments of the Osaka Bay have been continuously polluted with the human activities. Coastal sediments are known as large pool of contaminants including heavy metals. The Osaka Bay is no exception. However, recent information regarding the distributions, geochemical speciations, and risk evaluations of metals is limited for coastal sediments in the Bay. Therefore, we investigated the distributions, geochemical speciations, bioavailabilities, and conducted risk evaluations of the heavy metals, such as cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in sediments collected from 25 sites of the urban coastal environment of Osaka Bay, Japan. We observed high concentrations of Zn (76–967 mg/kg dry weight; DW) followed by Cu (not detected; ND-399 mg/kg DW), Pb (ND-73 mg/kg DW), and Cd (0.2–2.9 mg/kg DW). A considerable fraction of Cd was exchangeable (ND-0.4 mg/kg DW) and carbonate-bound (0.03–0.4 mg/kg DW). Cu occurred predominantly in the organic material-bound fraction (ND-348 mg/kg DW). Both Pb and Zn occurred predominantly in the Fe-Mn oxide fraction, with concentration ranges of ND-41 mg/kg DW and 24–277 mg/kg DW, respectively. Comparison with the effect range low (ERL) and effect range median (ERM) revealed that Cd, Cu, and Zn contribute potential biological toxicities to the sediments of Osaka Bay. High bioavailable concentrations of Cd and Zn may have ecotoxicological significance, because these metals are potentially highly available, especially to the benthic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bastami, K. D., Bagheri, H., Kheirabadi, V., Zaferani, G. G., Teymori, M. B., Hamzehpoor, A., Soltani, F., Haghparast, S., Harami, S. R. M., Ghorghani, N. F., & Ganji, S. (2014). Distribution and ecological risk assessment of heavy metals in surface sediments along southeast coast of the Caspian Sea. Marine Pollution Bulletin, 81, 262–267.

    Article  CAS  Google Scholar 

  • Bastami, K. D., Neyestani, M. R., Esmaeilzadeh, M., Haghparast, S., Alavi, C., Fathi, S., Nourbakhsh, S., Shirzadi, E. A., & Parhizgar, R. (2017). Geochemical speciation, bioavailability and source identification of selected metals in surface sediments of the southern Caspian Sea. Marine Pollution Bulletin, 114, 1014–1023.

    Article  CAS  Google Scholar 

  • Beškoski, V. P., Yamamoto, K., Yamamoto, A., Okamura, H., Hayashi, M., Nakano, T., & Inui, H. (2017). Distribution of perfluoroalkyl compounds in Osaka Bay and coastal waters of Western Japan. Chemosphere, 170, 260–265.

    Article  Google Scholar 

  • Bhuiyan, M. K. A., Qureshi, S., Billah, M. M., Kammella, S. V., Alam, M. R., Ray, S., & Abu Hena, M. K. (2018). Distribution of trace metals in channel sediment: A case study in South Atlantic Coast of Spain. Water, Air and Soil Pollution, 229, 14.

    Article  Google Scholar 

  • Billah, M. M., Mustafa Kamal, A. H., Idris, M. H., & Ismail, J. (2017). Mangrove macroalgae as biomonitors of heavy metal contamination in a tropical estuary, Malaysia. Water, Air, and Soil Pollution, 228, 347.

    Article  Google Scholar 

  • Chaharlang, B. H., Bakhtiari, A. R., Mohammadi, J., & Farshchi, P. (2016). Geochemical partitioning and pollution assessment of Ni and V as indicator of oil pollution in surface sediments from Shadegan wildlife refuge, Iran. Marine Pollution Bulletin, 111, 247–259.

    Article  CAS  Google Scholar 

  • Chen, M., & Ma, L. Q. (2001). Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal, 65(2), 491–499.

    Article  CAS  Google Scholar 

  • Delshab, H., Farshchi, P., & Keshavarzi, B. (2017). Geochemical distribution, fractionation and contamination assessment of heavy metals in marine sediments of the Asaluyeh port, Persian gulf. Marine Pollution Bulletin, 115, 401–411.

    Article  CAS  Google Scholar 

  • Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of the Total Environment, 407, 3972–3985.

    Article  Google Scholar 

  • Essien, J. P., Antai, S. P., & Olajire, A. A. (2009). Distribution, seasonal variations and ecotoxicological significance of heavy metals in sediments of cross river estuary mangrove swamp. Water, Air, and Soil Pollution, 197, 91–105.

    Article  CAS  Google Scholar 

  • Guo, W., Huo, S. L., Xi, B. D., Zhang, J. T., & Wu, F. C. (2015). Heavy metal contamination in sediments from typical lakes in the five geographic regions of China: Distribution, bioavailability, and risk. Ecological Engineering, 81, 243–255.

    Article  Google Scholar 

  • Hamzeh, M., Baghdad, O., Mirna, D., & Halwani, J. (2014). Trace metal mobilization from surficial sediments of the Seine River estuary. Water, Air and Soil Pollution, 225, 1878.

    Article  Google Scholar 

  • Hosono, T., Su, C. C., Okamura, K., & Taniguchi, M. (2010). Historical record of heavy metal pollution deduced by lead isotope ratios in core sediments from the Osaka Bay, Japan. Journal of Geochemical Exploration, 107, 1–8.

    Article  CAS  Google Scholar 

  • Jafarabadi, A. R., Alireza, R. B., Nunziacarla, S., & Tiziana, C. (2018). First report of geochemical fractionation distribution, bioavailability and risk assessment of potentially toxic inorganic elements in sediments of coral reef islands of the Persian Gulf, Iran. Marine Pollution Bulletin, 137, 185–197.

    Article  Google Scholar 

  • Jaysankar, D., Fukami, K., Iwasaki, K., & Okamura, K. (2009). Occurrence of heavy metals in the sediments of Uranouchi inlet, Kochi prefecture, Japan. Fisheries Science, 75, 413–423.

    Article  CAS  Google Scholar 

  • Jones, B., & Turki, A. (1997). Distribution and speciation of heavy metals in surficial sediments from the Tees estuary, north-East England. Marine Pollution Bulletin, 34, 768–779.

    Article  CAS  Google Scholar 

  • Ke, X., Shaofeng, G., Hao, H., Haijun, Z., Chunyong, W., & Wei, G. (2017). Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere, 175, 473–481.

    Article  CAS  Google Scholar 

  • Kitano, Y., & Fujiyoshi, R. (1980). Partitioning of cadmium, copper, manganese and iron into mineral and organic fractions in core sediments from the Osaka Bay. Geochemical Journal, 14, 289–301.

    Article  CAS  Google Scholar 

  • Kitano, Y., Sakata, M., & Matsumoto, E. (1981). Partitioning of heavy metals into mineral and organic fractions in a sediment core sample from Osaka Bay. Journal Ocean Society Japan, 37(5), 259–266.

    Article  CAS  Google Scholar 

  • Koyama, J., Kitoh, A., Nakai, M., Kohno, K., Tanaka, H., & Uno, S. (2013). Relative contribution of endocrine-disrupting chemicals to the estrogenic potency of marine sediments of Osaka Bay, Japan. Water, Air and Soil Pollution, 224, 1570.

    Article  Google Scholar 

  • Lestari, B. F., & Hindarti, D. (2018) Speciation of heavy metals Cu, Ni and Zn by modified BCR sequential extraction procedure in sediments from Banten Bay, Banten Province, Indonesia." In IOP Conference Series: Earth and Environmental Science, vol. 118, no. 1, p. 012059. IOP Publishing, 2018.

  • Li, X., Zhenguo, S., Wai, O. W. H., & Yok-Sheung, L. (2001). Chemical forms of Pb, Zn and cu in the sediment profiles of the Pearl River estuary. Marine Pollution Bulletin, 42, 215–223.

    Article  CAS  Google Scholar 

  • Lian, Y. W., Xu, J. S., Lin, P., Meguro, S., & Kawachi, S. (1999). Five heavy metals in propagules of ten mangrove species of China. Journal of Wood Science, 45, 343–347.

    Article  CAS  Google Scholar 

  • Liu, J., Yin, P., Chen, B., Gao, F., Song, H., & Li, M. (2016). Distribution and contamination assessment of heavy metals in surface sediments of the Luanhe River estuary, northwest of the Bohai Sea. Marine Pollution Bulletin, 109, 633–639.

    Article  CAS  Google Scholar 

  • Long, E. R., & MacDonald, D. D. (1998). Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Human Ecological Risk Assessment, 4, 1019–1039.

    Article  Google Scholar 

  • Long, E. R., Macdonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environment Management, 19, 81–97.

    Article  Google Scholar 

  • Lopez-Sachez, J. F., Rubio, R., Samitier, C., & Rauret, G. (1996). Trace metal partitioning in marine sediment and sludge deposited off the coast of Barcelona (Spain). Water Research, 30, 153–159.

    Article  Google Scholar 

  • Mahanta, M. J., & Bhattacharyya, K. G. (2011). Total concentrations, fractionation and mobility of heavy metals in soils of urban area of Guwahati, India. Environmental Monitoring and Assessment, 173, 221–240.

    Article  CAS  Google Scholar 

  • Masoud, M. S., Tarek, O., Said, G., El, Z., & Shreadah, M. A. (2010). Speciation of Fe, Mn and Zn in surficial sediments from the Egyptian Red Sea coasts. Chemical Speciation and Bioavailability, 22, 257–269.

    Article  CAS  Google Scholar 

  • Miki, S., Uno, S., Ito, K., Koyama, J., & Tanaka, H. (2014). Distributions of polycyclic aromatic hydrocarbons and alkylated polycyclic aromatic hydrocarbons in Osaka Bay, Japan. Marine Pollution Bulletin, 85(2), 558–565.

    Article  CAS  Google Scholar 

  • Mohiuddin, K. M., Ogawa, Y., Zakir, H. M., Otomo, K., & Shikazono, N. (2011). Heavy metals contamination in water and sediments of an urban river in a developing country.International. Journal of Environmental Science & Technology, 8(4), 723–736.

    CAS  Google Scholar 

  • Morillo, J., Usero, J., & Gracia, I. (2002). Partitioning of metals in sediments from the Odielriver (Spain). Environment International, 28, 263–227.

    Article  CAS  Google Scholar 

  • Morillo, J., Usero, J., & Gracia, I. (2004). Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere, 55, 431–442.

    Article  CAS  Google Scholar 

  • Nagaoka, C., Yamamoto, Y., Eguchi, S., & Miyazaki, N. (2004). Relationship between distribution of heavy metals and sedimental condition in the sediment of Osaka Bay. Bulletin of the Japanese Society of Scientific Fisheries (Japanese), 70, 159–167.

    Article  CAS  Google Scholar 

  • Naji, A., Ismail, A., & Ismail, A. R. (2010). Chemical speciation and contamination assessment of Zn and cd by sequential extraction in surface sediment of Klang River Malaysia. Microchemical Journal, 95, 285–292.

    Article  CAS  Google Scholar 

  • Neşer, G., Kontas, A., Ünsalan, D., Uluturhan, E., Altay, O., Darılmaz, E., Küçüksezgin, F., Tekoğul, N., & Yercan, F. (2012). Heavy metals contamination levels at the coast of Aliağa (Turkey) ship recycling zone. Marine Pollution Bulletin, 64, 882–887.

    Article  Google Scholar 

  • Noah, N. M., & Oomori, T. (2001). Evaluation of heavy metal pollution on the coastal marine. Bulletin of Faculty of Science, University Ryukyus, 81, 93–104.

    Google Scholar 

  • Nurulnadia, M. Y., Koyama, J., Uno, S., Kito, A., Kokushi, E., Bacolod, E. T., Ito, K., & Chuman, Y. (2014). Accumulation of endocrine disrupting chemicals (EDCs) in the polychaeteParaprionospio sp. from the Yodo River mouth, Osaka Bay, Japan. Environment. Monitoring and Assessment, 186, 1453–1463.

    Article  CAS  Google Scholar 

  • Olajire, A. A., Ayodele, E. T., Oyedirdan, G. O., & Oluyemi, E. A. (2003). Levels and speciation of heavy metals in soils of industrial southern Nigeria. Environment, Monitoring and Assessment, 85, 135–155.

    Article  CAS  Google Scholar 

  • Pardo, R., Barrado, E., Lourdes, P., & Vega, M. (1990). Determination and speciation of heavy metals in sediments of the Pisuerga River. Water Research, 24, 373–379.

    Article  CAS  Google Scholar 

  • Perin, G., Craboledda, L., Lucchese, L., & Orio, A. A. (1985). Heavy metal speciation in thesediments of northern Adriatic Sea. Anew approach for environmental toxicity determination. Heavy Metals in the Environment, 2, 454–456.

    CAS  Google Scholar 

  • Qiao, Y., Yang, Y., Gu, J., & Zhao, J. (2013). Distribution and geochemical speciation of heavy metals in sediments from coastal area suffered rapid urbanization, a case study of Shantou Bay, China. Marine Pollution Bulletin, 68, 140–146.

    Article  CAS  Google Scholar 

  • Rahman, M. A., & Ishiga, H. (2012). Trace metal concentrations in tidal flat coastal sediments, Yamaguchi prefecture, Southwest Japan. Environment Monitoring and Assessment, 184, 5755–5771.

    Article  CAS  Google Scholar 

  • Saeedi, M., Li, L. Y., Karbassi, A. R., & Zanjani, A. J. (2013). Sorbed metals fractionation and risk assessment of release in river sediment and particulate matter. Environment Monitoring and Assessment, 185, 1737–1754.

    Article  CAS  Google Scholar 

  • Sharifinia, M., Taherizadeh, M., Namin, J. I., & Kamrani, E. (2018). Ecological risk assessment of trace metals in the surface sediments of the Persian Gulf and Gulf of Oman: Evidence from subtropical estuaries of the Iranian coastal waters. Chemosphere, 191, 485–493.

    Article  CAS  Google Scholar 

  • Sundaray, S. K., Nayak, B. B., Lin, S., & Bhatta, D. (2011). Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—A cases study: Mahanadi basin, India. Journal of Hazardous Material, 186, 1837–1846.

    Article  CAS  Google Scholar 

  • Sutherland, T. F., Petersen, S. A., Levings, C. D., & Martin, A. J. (2007). Distinguishing between natural and aquaculture-derived sediment concentrations of heavy metals in the Broughton archipelago, British Columbia. Marine Pollution Bulletin, 54, 1451–1460.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Tokunaga, S., Hoshika, A., & Tatsumoto, H. (1995). Characterization of bottom sediments from Osaka Bay, Japan. Environmental Geology, 25, 263–269.

  • Tomlinson, D., Wilson, J., Harris, C., & Jeffrey, D. (1980). Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgoland Marine Research, 33, 566–575.

    Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth's crust. Geological Society of America Bulletin, 72, 175–192.

    Article  CAS  Google Scholar 

  • Uno, S., Tanaka, H., Kokushi, E., Bacolod, E. T., & Koyama, J. (2017a). Distributions of nitrated polycyclic aromatic hydrocarbons in the sediment of Osaka Bay, Japan. Marine Pollution Bulletin, 124(2), 1014-1019.

  • Uno, S., Kokushi, E., Kawano, M., McElroy, A. E., & Koyama, J. (2017b). Toxic evaluations of sediments in Tokyo Bay, Japan, using Japanese medaka embryos. Environment Science and Pollution Research, 24, 27702–27709.

    Article  CAS  Google Scholar 

  • Vicente-Martorell, J. J., Galindo-Riaño, M. D., García-Vargas, M., & Granado-Castro, M. D. (2009). Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary. Journal of Hazardous Material, 162, 823–836.

    Article  CAS  Google Scholar 

  • Wang, H., Wang, J., Liu, R., Yu, W., & Shen, Z. (2015). Spatial variation, environmental risk and biological hazard assessment of heavy metals in surface sediments of the Yangtze River estuary. Marine Pollution Bulletin, 93, 250–258.

    Article  CAS  Google Scholar 

  • Yang, L., Wang, L., Wang, Y., & Zhang, W. (2015). Geochemical speciation and pollution assessment of heavy metals in surface sediments from Nansi Lake, China. Environment Monitoring and Assessment, 187, 1–9.

    Article  Google Scholar 

  • Yang, W., Li, X., Pei, J., Sun, T., Shao, D., Bai, J., & Li, Y. (2017). Bioavailability of trace metals in sediments of a recovering freshwater coastal wetland in China's Yellow River Delta, and risk assessment for the macrobenthic community. Chemosphere, 189, 661–671.

    Article  CAS  Google Scholar 

  • Zhang, C., Yu, Z. G., Zeng, G. M., Jiang, M., Yang, Z. Z., Cui, F., Zhu, M. Y., Shen, L. Q., & Hu, L. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270–281.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

First author gratefully acknowledges a scholarship from the MEXT (Ministry of Education, Culture, Sports, Science and Technology; Japan). We also thank the Faculty of Fisheries, Kagoshima University for providing necessary facilities for this research work.

Funding

This work was supported by JSPS KAKENHI grant number JP18K11667.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiichi Uno.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Billah, M.M., Kokushi, E. & Uno, S. Distribution, Geochemical Speciation, and Bioavailable Potencies of Cadmium, Copper, Lead, and Zinc in Sediments from Urban Coastal Environment in Osaka Bay, Japan. Water Air Soil Pollut 230, 157 (2019). https://doi.org/10.1007/s11270-019-4196-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4196-8

Keywords

Navigation