Skip to main content

Advertisement

Log in

The Chemistry of Sub-Alpine Streams in Mined Regions of the North Cascades Range

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

One hundred and fifty years of mineral extraction throughout the mountainous Ruby Creek watershed, Washington has left a legacy of historical hard rock mines and placer claims and their wastes. We conducted a watershed-scale chemical analysis of these gold-bearing tributaries, accounting for seasonal variability in streamflow, to identify spatial and temporal changes in stream chemistry and attribute them to natural processes or mining activities. We used hierarchical cluster analysis (HCA) to group chemically similar water samples based on concentrations of 23 metals, pH, and conductivity and compared the chemistry of HCA-generated clusters of water samples using pairwise comparisons to find chemical patterns. Total concentrations of As, Ba, Ca, Mg, Na, Sb, and Se, dissolved concentrations of Fe, and conductivity increased as streamflow progressed from snowmelt-influenced to baseflow. High total concentrations of Al, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, V, and Zn during spring snowmelt and after rains were attributable to acid mine drainage at historical hard rock mines and prospect sites. Smaller-scale placer mining, by way of suction dredging and motorized gold panning, was associated with high concentrations of Al, Ba, Cd, Co, Fe, Mg, Mn, Mo, and Zn downstream. Stream biota may be adversely affected by exposure to Pb, which exceeded USEPA’s Aquatic Life Criteria, and exposure to particulate metals suspended in the water column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Astel, A., Tsakovski, S., Barbieri, P., & Simeonov, V. (2007). Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Water Research, 41(19), 4566–4578.

    Article  CAS  Google Scholar 

  • Bryne, P., Wood, P. J., & Reid, I. (2012). The impairment of river systems by metal mine contamination: a review including remediation options. Critical Reviews in Environmental Science Technology, 42(19), 2017–2077.

    Article  Google Scholar 

  • Clements, W. H., Carlisle, D. M., Lazorchak, J. M., & Johnson, P. C. (2000). Heavy metals structure benthic communities in Colorado mountain streams. Ecological Applications, 10(2), 626–638.

    Article  Google Scholar 

  • Esri. (2018). World hillshade [basemap]. https://www.arcgis.com/home/item.html?id=1b243539f4514b6ba35e7d995890db1d. Accessed 26 November 2018.

  • Farag, A. M., Woodward, D. F., Brumbaugh, W. G., Goldstein, J. N., MacConnell, E., Hogstrand, C., & Barrows, F. T. (1999). Dietary effects of metals-contaminated invertebrates from the Coeur d'Alene River, Idaho, on cutthroat trout. Transactions of the American Fisheries Society, 128(4), 578–592.

    Article  CAS  Google Scholar 

  • Gammons, C. H., Nimick, D. A., Parker, S. R., Cleasby, T. E., & McCleskey, R. B. (2005a). Diel behavior of iron and other heavy metals in a mountain stream with acidic to neutral pH: Fisher Creek, Montana, USA. Geochimica et Cosmochimica Acta, 69(10), 2505–2516.

    Article  CAS  Google Scholar 

  • Gammons, C. H., Wood, S. A., & Nimick, D. A. (2005b). Diel behavior of rare earth elements in a mountain stream with acidic to neutral pH. Geochimicha et Cosmochimica Acta, 69(15), 3747–3758.

    Article  CAS  Google Scholar 

  • Gray, N. F. (1997). Environmental impact and remediation of acid mine drainage: a management problem. Environmental Geology, 30(2), 62–71.

    Article  CAS  Google Scholar 

  • Gray, N. F. (1998). Acid mine drainage composition and the implications for its impact on lotic systems. Water Research, 32(7), 2122–2134.

    Article  CAS  Google Scholar 

  • Harris, D. L., Lottermoser, B. G., & Duchesne, J. (2003). Ephemeral acid mine drainage at the Montalbion silver mine, North Queensland. Australian Journal of Earth Sciences, 50(5), 797–809.

    Article  CAS  Google Scholar 

  • Harter, T. (2003). Groundwater quality and groundwater pollution. Farm water quality planning publication 8084, FWQP reference sheet 11.2. Oakland: University of California Division of Agriculture and Natural Resources http://groundwater.ucdavis.edu/files/136273.pdf. Accessed on 10 March 2019.

    Google Scholar 

  • Harvey, B. C., & Lisle, T. E. (1998). Effects of suction dredging on streams: a review and an evaluation strategy. Fisheries, 23(8), 8–17.

    Article  Google Scholar 

  • Herbst, D. B., Medhurst, R. B., Black, N., & J.P. (2018). Long-term effects and recovery of streams from acid mine drainage and evaluation of toxic metal threshold ranges for macroinvertebrate community reassembly. Environmental Toxicology and Chemistry, 37(10), 2575–2592.

    Article  CAS  Google Scholar 

  • Hogsden, K. L., & Harding, J. S. (2012). Consequences of acid mine drainage for the structure and function of benthic stream communities: a review. Freshwater Science, 31(1), 108–120.

    Article  Google Scholar 

  • Hudson, E., Kulessa, B., Edwards, P., Williams, T., & Walsh, R. (2018). Integrated hydrological and geophysical characterization of surface and subsurface water contamination at abandoned metal mines. Water, Air, & Soil Pollution. https://doi.org/10.1007/s11270-018-3880-4.

  • Hughes, R. M., Larsen, D. P., & Omernik, J. M. (1986). Regional reference sites: a method for assessing stream potentials. Environmental Management, 10(5), 629–635.

    Article  CAS  Google Scholar 

  • Jin, L., Siegel, D. I., Lautz, L. K., & Lu, Z. (2012). Identifying streamflow sources during spring snowmelt using water chemistry and isotopic composition in semi-arid mountain streams. Journal of Hydrology, 470-471(12), 289–301.

    Article  CAS  Google Scholar 

  • Johnson, A., & Peterschmidt, M. (2005). Effects of small-scale gold dredging on arsenic, copper, lead, and zinc concentrations in the Similkameen River. Publication No. 05-03-007. Washington State Department of ecology. https://fortress.wa.gov/ecy/publications/documents/0503007.pdf. Accessed on 10 March 2019.

  • Keith, D. C., Runnells, D. D., Eposito, K. J., Chermak, J. A., Levy, D. B., Hannula, S. R., Watts, M., & Hall, L. (2001). Geochemical models of the impact of acidic groundwater and evaporative sulfate salts on Boulder Creek at Iron Mountain, California. Applied Geochemistry, 16(7–8), 947–961.

    Article  CAS  Google Scholar 

  • Kowalkowski, T., Zbytniewski, R., Szpejna, J., & Buszewski, B. (2006). Application of chemometrics in river water classification. Water Research, 40(4), 744–752.

    Article  CAS  Google Scholar 

  • Lee, G., & Faure, G. (2007). Processes controlling trace-metal transport in surface water contaminated by acid-mine drainage in the Ducktown Mining District, Tennessee. Water, Air, & Soil Pollution, 186(1–4), 221–232.

    Article  CAS  Google Scholar 

  • Lottermoser, B. G. (2010). Mine wastes. Germany: Springer-Verlag.

    Book  Google Scholar 

  • McBroom, M. (2004). Washington undermined the toxic legacy of abandoned metal mines in Washington state. Seattle: Washington Public Interest Group Foundation.

    Google Scholar 

  • McKnight, D. M., & Feder, G. L. (1984). The ecological effect of acid conditions and precipitation of hydrous metal oxides in a Rocky Mountain stream. Hydrobiologia, 119(2), 129–138.

    Article  CAS  Google Scholar 

  • McNeil, V. H., Cox, M. E., & Preda, M. (2005). Assessment of chemical water types and their spatial variation using multi-stage cluster analysis, Queensland, Australia. Journal of Hydrology, 310(1), 181–200.

  • Merovich, G. T., Jr., Stiles, J. M., Petty, J. T., Ziemkiewicz, P. F., & Fulton, J. B. (2007). Water chemistry-based classification of streams and implications for restoring mined Appalachian watersheds. Environmental Toxicology and Chemistry, 26(7), 1361–1369.

    Article  CAS  Google Scholar 

  • Moen, W. S. (1969). Mine and mineral deposits of Whatcom County, Washington. Bulletin no. 57. Olympia: Washington Department of Natural Resources. Division of Mines & Geology.

  • Mote, P. W., Rupp, D. E., Li, S., Sharp, D. J., Otto, F., Uhe, P. F., Xiao, M., Lettenmaier, D. P., Cullen, H., & Allen, M. R. (2016). Perspectives on the causes of exceptionally low 2015 snowpack in the western United States. Geophysical Research Letters, 43(20), 10980–10988.

    Article  Google Scholar 

  • Nimick, D. A., Gammons, C. H., Cleasby, T. E., Madison, J. P., Skaar, D., & Brick, C. M. (2003). Diel cycles in dissolved metal concentrations in streams: occurrence and possible causes. Water Resources Research, 39(9), 2–17.

    Article  Google Scholar 

  • Niyogi, D. K., McKnight, D. M., & Lewis, W. M., Jr. (1999). Influences of water and substrate quality for periphyton in a montane stream affected by acid mine drainage. Limnology and Oceanography, 44(3), 804–809.

    Article  CAS  Google Scholar 

  • Niyogi, D. K., Lewis, W. M., & McKnight, D. M. (2002). Effect of stress from mine drainage on diversity, biomass, and function of primary producers in mountain streams. Ecosystems, 5(6), 554–567.

    CAS  Google Scholar 

  • Pielou, E. C. (1984). The interpretation of ecological data: A primer on classification and ordination. New York: Wiley.

    Google Scholar 

  • Potyondy, J., Geier, T., Luehring, P., Hudy, M., Roper, B., et al. (2011). Watershed condition framework, report no (FS-977). Forest Service: United States Department of Agriculture.

    Google Scholar 

  • Rand, G. M. (1995). Fundamentals of aquatic toxicology: effects, environmental fate, and risk assessment. New York: Taylor & Francis. f.

    Google Scholar 

  • Raymond, C. L., Peterson, D. L., & Rochefort, R. M. (2014). Climate change vulnerability and adaptation in the north cascades region, Washington. In General technical report PNW-GTR-892. Oregon: United States Department of Agriculture Forest Service, Pacific Northwest Research Station https://www.fs.fed.us/pnw/pubs/pnw_gtr892.pdf. Accessed 10 March 2019.

    Google Scholar 

  • Rice, E. W., Baird, R. B., & Eaton, A. D. (2017). Standard methods for the examination of water and wastewater. Washington: American Public Health Association, American Water Works Association, Water Environment Federation.

    Google Scholar 

  • Rosseland, B. O., Blakar, I. A., Bulger, A., Kroglund, F., Kvellstad, A., Lydersen, E., Oughton, D. H., Salbu, B., Staurnes, M., & Vogt, R. (1992). The mixing zone between limed and acidic river waters: complex aluminum chemistry and extreme toxicity for salmonids. Environmental Pollution, 78(1–3), 3–8.

    Article  CAS  Google Scholar 

  • Schemel, L. E., Kimball, B. A., & Bencala, K. E. (2000). Colloid formation and metal transport through two mixing zones affected by acid mine drainage near Silverton, Colorado. Applied Geochemistry, 15(7), 1003–1018.

    Article  CAS  Google Scholar 

  • Selong, J. H., McMahon, T. E., Zale, A. V., & Barrows, F. T. (2011). Effect of temperature on growth and survival of bull trout, with application of an improved method for determining thermal tolerance in fishes. Transactions of the American Fisheries Society, 130(6), 1026–1037.

    Article  Google Scholar 

  • Sjöblom, Å., Håkansson, K., & Allard, B. (2004). River water metal speciation in a mining region – the influence of wetlands, liming, tributaries, and groundwater. Water, Air, & Soil Pollution, 152(1–4), 173–194.

    Article  Google Scholar 

  • Søndergaard, J., Elberling, B., Asmund, G., Gudum, C., & Iversen, K. M. (2007). Temporal trends of dissolved weathering products released from a high Arctic coal mine waste rock pile in Svalbard (78°N). Applied Geochemistry, 22(5), 1025–1038.

    Article  Google Scholar 

  • Soucek, D. J., Cherry, D. S., & Trent, G. C. (2000). Relative acute toxicity of acid mine drainage water column and sediments to Daphnia magna in the Puckett’s Creek watershed, Virginia, USA. Archives of Environmental Contamination and Toxicology, 38(3), 305–310.

    Article  CAS  Google Scholar 

  • Strzebońska, M., Jarosz-Krzemińska, E., & Adamiec, E. (2017). Assessing historical mining and smelting effects on heavy metal pollution of river systems over span of two decades. Water, Air, & Soil Pollution. https://doi.org/10.1007/s11270-017-3327-3.

  • Stumm, W., & Morgan, J. J. (1995). Aquatic chemistry. New York: Wiley.

    Google Scholar 

  • USEPA. (2018). National recommended water quality criteria – Aquatic life criteria table. Washington: U.S. Environmental Protection Agency https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table. Accessed on 10 March 2019.

    Google Scholar 

  • USDA-NRCS. (2018). National Water and climate center Snotel site Hart’s pass [sitenum=515]. Washington DC: U.S. Department of Agriculture Natural Resources Conservation Service, National Water and Climate Center https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=515&state=wa/. Accessed on 10 March 2019.

    Google Scholar 

  • USDOI. (2018). Doi Data. Washington D.C.: United States Department of the Interior, National Park Service. https://www.doi.gov/data.. Accessed on 10 March 2018.

  • USFWS, WDFW, & ODFW. (2015). Coastal recovery unit implementation plan for Bull Trout (Salvelinus confluentus). U.S. Fish and Wildlife Service, Washington Fish and Wildlife, and Oregon Fish and Wildlife. https://www.fws.gov/pacific/bulltrout/pdf/Final_Coastal_RUIP_092915.pdf. Accessed on 10 March 2019.

  • Vega, M., Pardo, R., Barrado, E., & Debán, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32(12), 3581–3592.

    Article  CAS  Google Scholar 

  • Williams, J. E., Ellestad, C., & Wasley, D. G. (2011). Removal action work plan and design drawings, azurite mine removal action, Mt. Baker-Snoqualmie National Forest (administered by the Okanogan-Wenatchee National Forest), Whatcom County, Washington. Project no. 2010230015. Spokane: Cascade Earth Sciences https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5339453.pdf. Accessed on 10 March 2019.

    Google Scholar 

  • Wolff, F. E., McKay, D. T., Jr., & Norman, D. K. (2003). Inactive and abandoned mine lands –new light and mammoth mines, Slate Creek Mining District, Whatcom County, Washington. In Report 2003–13. Olympia: Washington Department of Natural Resources, Division of Geology and Earth Resources.

    Google Scholar 

  • Woodhouse, P., Jacobson, D., & Victor, P. (2006). Exploring Washington’s historic mines: the Northern Cascade mountains. Washington: Oso Publishing.

    Google Scholar 

  • Woodward, D. F., Brumbaugh, W. G., DeLonay, A. J., Little, E. E., & Smith, C. E. (1994). Effects on rainbow trout fry of a metals-contaminated diet of benthic invertebrates from the Clark Fork River, Montana. Transactions of the American Fisheries Society, 123(1), 51–62.

    Article  Google Scholar 

  • Woodward, D. F., Farag, A. M., Bergman, H. L., DeLonay, A. J., Little, E. E., Smith, C. E., & Barrows, F. T. (1995). Metals-contaminated benthic invertebrates in the Clark Fork River, Montana: effects on age-0 Brown trout and rainbow trout. Canadian Journal of Fisheries and Aquatic Sciences, 52(9), 1994–2004.

    Article  CAS  Google Scholar 

  • Wydoski, R. S., & Whitney, R. R. (2003). Inland fishes of Washington. Washington: University of Washington Press.

    Google Scholar 

Download references

Acknowledgments

The authors appreciate Elliot Banko, Zachery Bursell, Kaitlynn Cafferty, Joan Hong, Steve Meyer, Heath Bohlmann, Teri Bodensteiner, and Tyler Tran for their assistance in the field and laboratory. Analytical equipment was provided by Advanced Materials Science and Engineering Center at Western Washington University with technical assistance from Kyle Mikkelsen. Support for this project was provided by Huxley College of the Environment Small Grants for graduate research, the Skagit Environmental Endowment Commission, and North Cascades National Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brooke G. Bannerman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bannerman, B.G., Bodensteiner, L.R., Sofield, R.M. et al. The Chemistry of Sub-Alpine Streams in Mined Regions of the North Cascades Range. Water Air Soil Pollut 230, 143 (2019). https://doi.org/10.1007/s11270-019-4195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4195-9

Keywords

Navigation