Skip to main content
Log in

Oxidation Dynamics and Composition of the Flotation Plant Derived Tailing Impoundment Aquisgrana (Spain)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A tailing impoundment situated in the mining district of La Carolina (Spain), which stores waste resulting from the washing of Pb and Ag sulphides, was studied 30 years after it was abandoned. Fibre optic sensors were installed to record humidity, temperature, electrical conductivity and oxygen content in the pores down to a depth of 35.5 m. The oxygen profiles show an oxidised thickness of 5 m, meaning that the speed of the advancing oxidation front is estimated as 15 cm year−1. Sediment samples were obtained from different depths, and parameters such as pH, carbonates and metal(loid)s, among others, were analysed. High concentrations of As (> 500 mg kg−1), Fe (> 34,000 mg kg−1), Mn (> 900 mg kg−1), Pb (> 8000 mg kg−1) and Zn (> 5000 mg kg−1) were found. A piezometer was installed to enable the water inside the tailing pond to be sampled, and this presented high contents of SO42− (> 2400 mg L−1), Fe (> 28,000 μg L−1), Mn (> 7800 μg L−1) and Zn (> 7000 μg L−1), suggesting that the mineral leaching was related to the oscillations in the water table. The water from two drainage adits situated at the foot of the impoundment was also analysed, as well as surface water both upstream and downstream from it. The speciation-saturation models applied for these water samples indicated that in spite of the contamination potential of the impoundment, the deterioration in the quality of the river water is mainly due to the discharge from mining drains and the dissolution processes of precipitates accumulated along the riverbanks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aachib, M., Mbonimpa, M., Aubertinand, M. (2004). Laboratory measurements and predictive equations for gas diffusion coefficient of unsaturated soils. 55th Canadian Geotechnical Conference and 3rd joint IAH-CNC and CGS Groundwater Specialty Conference, Niagara Falls, Ontario163–72.

  • Alakangas, L., Öhlander, B., & Lundberg, A. (2010). Estimation of temporal changes in oxidation rates of sulphides in copper minetailings at Laver, Northern Sweden. Science of the Total Environment, 408, 1386–1392.

    Article  CAS  Google Scholar 

  • Amente, G., Baker, J. M., & Reece, C. F. (2000). Estimation of soil solution electrical conductivity from bulk soil electrical conductivity in sandy soils. Soil Science Society of America Journal, 64, 1931–1939.

    Article  CAS  Google Scholar 

  • Amos, R. T., Blowes, D. W., Bailey, B. L., Sego, D. C., Smith, L., & Ritchie, A. I. (2015). Waste-rock hydrogeology and geochemistry. Applied Geochemistry, 57, 140–156.

    Article  CAS  Google Scholar 

  • Bussière, B., Aubertin, M., & Chapuis, R. P. (2003). The behavior of inclined covers used as oxygen barriers. Canadian Geotechnical Journal, 40, 512–535.

    Article  Google Scholar 

  • De la Torre, M. J., Campos, M. J., & Hidalgo, M. C. (2010). Estudio Mineralógico de las Escombreras en el Distrito Minero de La Carolina (Jaén, España). Macla, 13, 213–214.

    Google Scholar 

  • Dold, B., & Fontboté, L. (2001). Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. Journal of Geochemical Exploration, 74, 3–55.

    Article  CAS  Google Scholar 

  • Gutiérrez, F. (2007). Minería en Sierra Morena, El distrito minero de La Carolina. Ilustre Colegio Oficial de Ingenieros de Minas de Linares.

  • Hammarstrom, J. M., Seal, R. R., II, Meier, A. L., & Kornfeld, J. M. (2005). Secondary sulfate minerals associated with acid drainage in the eastern US: Recycling of metals and acidity in superficial environments. Chemical Geology, 215, 407–431.

    Article  CAS  Google Scholar 

  • Hayes, S. M., Root, R. A., Perdrial, N., Maier, R. M., & Chorover, J. (2014). Surficial weathering of iron sulfide mine tailings under semi-arid climate. Geochimica et Cosmochimica Acta, 141, 240–257.

    Article  CAS  Google Scholar 

  • Hidalgo, M. C., Rey, J., Benavente, J., & Martínez, J. (2010). Hydrogeochemistry of abandoned Pb Sulphide mines: The mining district of La Carolina (southern Spain). Environmental Earth Sciences, 61, 37–46.

    Article  CAS  Google Scholar 

  • Jackson, B. P., & Miller, W. P. (2000). Effectiveness of phosphate and hydroxide for desorption of arsenic and selenium species from iron oxides. Soil Science Society of America Journal, 64, 1616–1622.

    Article  CAS  Google Scholar 

  • Kohfahl, C. (2003). The influence of water table oscillations on pyrite weathering and acidification in open pit lignite mines. In Column studies and modelling of Hydrogeochemical and hydraulic processes in the LOHSA storage system, Germany. Ph.D. thesis. University of Berlin.

  • Kohfahl, C., Graupner, T., Fetzer, C., & Pekdeger, A. (2010). The impact of cemented layers and hardpans on oxygen diffusivity in mining waste heaps. A field study of the Halsbrücke lead–zinc mine tailings (Germany). Science of the Total Environment, 408(23), 5932–5939.

    Article  CAS  Google Scholar 

  • Kossoff, D., Dubbin, W. E., Alfredsson, M., Edwards, S. J., Macklin, M. G., & Hudson-Edwards, K. A. (2014). Mine tailings dams : Characteristics, failure, environmental impacts, and remediation. Applied Geochemistry, 51, 229–245.

    Article  CAS  Google Scholar 

  • Lillo, F. J. (1992). Geology and geochemistry of Linares-La Carolina Pb-ore field (southeastern border of the Hesperian massif). Ph.D. thesis. University of Leeds.

  • Lillo, F. J., Pieren, A., Hernandez-Samaniego, A., Olive, A., Carreras, F., Gutierrez-Marco, J. C., Sarmiento, G. N., & Fernández, D. C. (1998). Mapa memoria explicativa de la hoja 862 (Santa Elena) del Mapa Geológico 1:50.000. Madrid: IGME.

    Google Scholar 

  • Lindsay, M. B. J., Moncur, M. C., Bain, J. G., Jambor, J. L., Ptacek, C. J., & Blowes, D. W. (2015). Geochemical and mineralogical aspects of sulfide mine tailings. Applied Geochemistry, 57, 157–177.

    Article  CAS  Google Scholar 

  • Martínez, J., Rey, J., Hidalgo, M. C., & Benavente, J. (2012). Characterizing abandoned mining dams by geophysical (ERI) and geochemical methods: The Linares-La Carolina District (southern Spain). Water, Air, & Soil Pollution, 223, 2955–2968.

    Article  Google Scholar 

  • Martínez, J., Hidalgo, M. C., Rey, J., Garrido, J., Kohfahl, C., Benavente, J., & Rojas, D. (2016). A multidisciplinary characterization of a tailings pond in the Linares-La Carolina mining district, Spain. Journal of Geochemical Exploration, 162, 62–71.

    Article  Google Scholar 

  • Moncur, M. C., Ptacek, C. J., Blowes, D. W., & Jambor, J. L. (2005). Release, transport and attenuation of metals from an old tailings impoundment. AppliedGeochemistry, 20, 639–659.

    CAS  Google Scholar 

  • Navarro, M. C., Pérez-Sirvent, C., Matínez-Sanchez, M. J., Vidal, J., Tovar, P. J., & Bech, J. (2008). Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. Journal of Geochemical Exploration, 96, 183–193.

    Article  CAS  Google Scholar 

  • Nordstrom, D. K., Blowes, D. W., & Ptacek, C. J. (2015). Hydrogeochemistry and microbiology of mine drainage: An update. Applied Geochemistry, 57, 3–16.

    Article  CAS  Google Scholar 

  • Pierce, M. L., & Moore, C. B. (1982). Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Research, 16, 1247–1253.

    Article  CAS  Google Scholar 

  • Redwan, M., & Rammlmair, D. (2012). Influence of climate, mineralogy and mineral processing on the weathering behaviour within two, low-sulfide, high-carbonate, gold mine tailings in the Eastern Desert of Egypt. Environment and Earth Science. https://doi.org/10.1007/s12665-011-1460-7.

    Article  Google Scholar 

  • Rey, J., Hidalgo, M. C., & Martínez, J. (2005). Upper Ordovician-lower Silurian transgresive-regressive cycles of the central Iberian Zone (NE Jaen, Spain). Geological Journal, 40, 1–19.

    Article  Google Scholar 

  • Romano, C. G., Mayer, K. U., Jones, D. R., Ellerbroek, D. A., & Blowes, D. W. (2003). Effectiveness of various cover scenarios on the rate of sulfide oxidation of mine tailings. Journal of Hydrology, 271, 171–187.

    Article  CAS  Google Scholar 

  • Root, R. A., Hayes, S. M., Hammond, C. M., Maier, R. M., & Chorover, J. (2015). Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate. Applied Geochemistry, 62, 131–149.

    Article  CAS  Google Scholar 

  • Salmon, S. U., & Malmström, M. E. (2006). Quantification of mineral dissolution rates and applicability of rate laws: Laboratory studies of mill tailings. Applied Geochemistry, 21, 269–288.

    Article  CAS  Google Scholar 

  • Schuwirth, N., Voegelin, A., Kretzschmar, R., & Hofmann, T. (2007). Vertical distribution and speciation of trace metals in weathering flotation residues of a zinc/lead sulfide mine. Journal of Environmental Quality, 36, 61–69.

    Article  CAS  Google Scholar 

  • Smuda, J., Dold, B., Friese, K., Morgenstern, P., & Glaesser, W. (2007). Mineralogical and geochemical study of element mobility at the sulfide-rich Excelsior waste rock dump from the polymetallic Zn–Pb–(Ag–Bi–Cu) deposit, Cerro de Pasco, Peru. Journal of Geochemical Exploration, 92, 97–110.

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Government of Junta de Andalucía (Project RNM 05959) and by the Spanish Ministry of Economy and Competitiveness (Project CGL2013-45485-R, co-financed FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Rojas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, D., Hidalgo, M., Kohfahl, C. et al. Oxidation Dynamics and Composition of the Flotation Plant Derived Tailing Impoundment Aquisgrana (Spain). Water Air Soil Pollut 230, 158 (2019). https://doi.org/10.1007/s11270-019-4190-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4190-1

Keywords

Navigation