Skip to main content
Log in

Integrating Biochemical, Morpho-physiological, Nutritional, and Productive Responses to Cd Accumulation in Massai Grass Employed in Phytoremediation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Cadmium (Cd) phytoextraction efficiency basically depends on Cd accumulation in their tissues. Thus, our aim in this study was to select biochemical, morpho-physiological, nutritional, and productive responses associated to Cd accumulation in the roots, stems and sheaths, and leaf blades of Panicum maximum cv. Massai (Massai grass), using the random forests analysis. Massai grass was exposed to combinations of three sulfur (S) concentrations (0.1, 1.9, and 3.7 mmol L−1) and two Cd concentrations (0.0 and 0.1 mmol L−1) in nutrient solutions. The dry biomass production of Massai grass exposed to Cd decreased by around 50% in relation to control. However, there were no visual symptoms of Cd toxicity in the shoot of this plant, even with Cd concentrations in their shoot exceeding 100 mg kg−1 DW. The lowest dry biomass production of the plants exposed to Cd combined with the absence of visual symptoms of Cd toxicity indicates us that Massai grass is a bioindicator plant that can greatly cope with the Cd-induced stress, but in a little bit different way from other plants. Antioxidant enzymes apparently are not essential for Massai grass cope with Cd-induced stress, differently of other mechanisms (e.g., higher synthesis of thiol compounds and amino acids involved on reactive oxygen species (ROS) scavenging and Cd chelation). Probably, the plant responses that most explained Cd accumulation in Massai grass can be used to identify grasses with high capacity to accumulate Cd in phytoremediation programs with this group of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bashir, H., Qureshi, M. I., Ibrahim, M. M., & Iqbal, M. (2015a). Chloroplast and photosystems: impact of cadmium and iron deficiency. Photosynthetica, 53, 321–335.

    Article  CAS  Google Scholar 

  • Bashir, H., Ibrahim, M. M., Bagheri, R., Ahmad, J., Arif, I. A., Baig, M. A., & Qureshi, M. I. (2015b). Influence of sulfur and cadmium on antioxidants, phytochelatins and growth in Indian mustard. AoB Plants, 7, plv001.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Christensen, K. K., & Sand-Jensen, K. (1998). Precipitated iron and manganese plaques restrict root uptake of phosphorus in Lobelia dortmanna. Canadian Journal of Botany, 76, 2158–2163.

    Article  CAS  Google Scholar 

  • Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88, 1707–1719.

    Article  CAS  Google Scholar 

  • Clemens, S., Aarts, M. G. M., Thomine, S., & Verbruggen, N. (2013). Plant science: the key to preventing slow cadmium poisoning. Trends in Plant Science, 18, 92–99.

    Article  CAS  Google Scholar 

  • Cobbett, C., & Goldsbrough, P. (2002). Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53, 159–182.

    Article  CAS  Google Scholar 

  • Dong, Y., Silbermann, M., Speiser, A., Forieri, I., Linster, E., Poschet, G., Samami, A. A., Watanabe, M., Sticht, C., Teleman, A. A., Deragon, J., Saito, K., Hell, R., & Wirtz, M. (2017). Sulfur availability regulates plant growth via glucose-TOR signaling. Nature Communications, 8, 1174.

    Article  Google Scholar 

  • Du, J., Yan, C., & Li, Z. (2013). Formation of iron plaque on mangrove Kandalar. Obovata (S.L.) root surfaces and its role in cadmium uptake and translocation. Marine Pollution Bulletin, 74, 105–109.

    Article  CAS  Google Scholar 

  • Ekvall, L., & Greger, M. (2003). Effects of environmental biomass-producing factors on Cd uptake in two Swedish ecotypes of Pinus sylvestris. Environmental Pollution, 121, 401–411.

    Article  CAS  Google Scholar 

  • Gallego, S. M., Pena, L. B., Barcia, R. A., Azpilicueta, C. E., Iannone, M. F., Rosales, E. P., Zawoznik, M. S., Groppa, M. D., & Benavides, M. P. (2012). Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environmental and Experimental Botany, 83, 33–46.

    Article  CAS  Google Scholar 

  • Hoagland, D., & Arnon, D. I. (1950). The water culture method for growing plants without soil. Berkeley: California Agricultural Experimental Station.

    Google Scholar 

  • Joshi, V., Joung, J. G., Fei, Z., & Jander, G. (2010). Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids, 39, 933–947.

    Article  CAS  Google Scholar 

  • Jozefczak, M., Bohler, S., Schat, H., Horemans, N., Guisez, Y., Remans, T., Vangronsveld, J., & Cuypers, A. (2015). Both the concentration and redox state of glutathione and ascorbate influence the sensitivity of Arabidopsis to cadmium. Annals of Botany, 116, 601–612.

    Article  CAS  Google Scholar 

  • Kasukabe, Y., He, L., Nada, K., Misawa, S., Ihara, I., & Tachibana, S. (2004). Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant & Cell Physiology, 45, 712–722.

    Article  CAS  Google Scholar 

  • Keunen, E., Peshev, D., Vangronsveld, J., Van Den Ende, W., & Cuypers, A. (2013). Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant, Cell & Environment, 36, 1242–1255.

    Article  CAS  Google Scholar 

  • Khan, M. A., Khan, S., Khan, A., & Alam, M. (2017). Soil contamination with cadmium, consequences and remediation using organic amendments. The Science of the Total Environment, 601-602, 1591–1605.

    Article  CAS  Google Scholar 

  • Kono, Y., & Fridovich, I. (1982). Superoxide radical inhibits catalase. The Journal of Biological Chemistry, 257, 5751–5754.

    CAS  Google Scholar 

  • Lux, A., Martinka, M., Vaculík, M., & White, P. J. (2011). Root responses to cadmium in the rhizosphere: a review. Journal of Experimental Botany, 62, 21–37.

    Article  CAS  Google Scholar 

  • Marzban, L., Akhzari, D., Ariapour, A., Mohammadparast, B., & Pessarakli, M. (2017). Effects of cadmium stress on seedlings of various rangeland plant species (Avena fatua L., Lathyrus sativus L., and Lolium temulentum L.): growth, physiological traits, and cadmium accumulation. Journal of Plant Nutrition, 40, 2127–2137.

    Article  CAS  Google Scholar 

  • Mendoza-Cózatl, D., Loza-Tavera, H., Hernández-Navarro, A., & Moreno-Sánchez, R. (2005). Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiology Reviews, 29, 653–671.

    Article  Google Scholar 

  • Montgomery, D. C. (1984). Design and analysis of experiments (2nd ed.). New York: Wiley.

    Google Scholar 

  • Nawrot, T. S., Staessen, J. A., Roels, H. A., Munters, E., Cuypers, A., Richart, T., Ruttens, A., Smeets, K., Clijsters, H., & Vangronsveld, J. (2010). Cadmium exposure in the population: from health risks to strategies of prevention. Biometals, 23, 769–782.

    Article  CAS  Google Scholar 

  • R Core Team (2017) [software]. R Foundation for Statistical Computing, Vienna.

  • Rabêlo, F. H. S., & Borgo, L. (2016). Changes caused by heavy metals in micronutrient content and antioxidant system of forage grasses used for phytoremediation: an overview. Ciencia Rural, 46, 1368–1375.

    Article  Google Scholar 

  • Rabêlo, F. H. S., Azevedo, R. A., & Monteiro, F. A. (2017a). Proper supply of S increases GSH synthesis in the establishment and reduces tiller mortality during the regrowth of Tanzania guinea grass used for Cd phytoextraction. Journal of Soils and Sediments, 17, 1427–1436.

    Article  Google Scholar 

  • Rabêlo, F. H. S., Azevedo, R. A., & Monteiro, F. A. (2017b). The proper supply of S increases amino acid synthesis and antioxidant enzyme activity in Tanzania guinea grass used for Cd phytoextraction. Water, Air, and Soil Pollution, 228, 394.

    Article  Google Scholar 

  • Rabêlo, F. H. S., Jordão, L. T., & Lavres, J. (2017c). A glimpse into the symplastic and apoplastic Cd uptake by Massai grass modulated by sulfur nutrition: Plants well-nourished with S as a strategy for phytoextraction. Plant Physiology and Biochemistry, 121, 48–57.

    Article  Google Scholar 

  • Rabêlo, F. H. S., Borgo, L., & Lavres, J. (2018a). The use of forage grasses for the phytoremediation of heavy metals: plant tolerance mechanisms, classifications, and new prospects. In V. Matichenkov (Ed.), Phytoremediation: methods, management and assessment (pp. 59–103). New York: Nova Science Publishers.

    Google Scholar 

  • Rabêlo, F. H. S., Lux, A., Rossi, M. L., Martinelli, A. P., Cuypers, A., & Lavres, J. (2018b). Adequate S supply reduces the damage of high Cd exposure in roots and increases N, S and Mn uptake by Massai grass grown in hydroponics. Environmental and Experimental Botany, 148, 35–46.

    Article  Google Scholar 

  • Rabêlo, F. H. S., Fernie, A. R., Navazas, A., Borgo, L., Keunen, E., Silva, B. K. A., Cuypers, A., & Lavres, J. (2018c). A glimpse into the effect of sulfur supply on metabolite profiling, glutathione and phytochelatins in Panicum maximum cv. Massai exposed to cadmium. Environmental and Experimental Botany, 151, 76–88.

    Article  Google Scholar 

  • Rabêlo, F. H. S., Silva, B. K. A., Borgo, L., Keunen, E., Rossi, M. L., Borges, K. L. R., Santos, E. F., Reis, A. R., Martinelli, A. P., Azevedo, R. A., Cuypers, A., & Lavres, J. (2018d). Enzymatic antioxidants - relevant or not to protect the photosynthetic system against cadmium-induced stress in Massai grass supplied with sulfur? Environmental and Experimental Botany, 155, 702–717.

    Article  Google Scholar 

  • Redovniković, I. R., De Marco, A., Proietti, C., Hanousek, K., Sedak, M., Bilandžić, N., & Jakovljević, T. (2017). Poplar response to cadmium and lead soil contamination. Ecotoxicology and Environmental Safety, 144, 482–489.

    Article  Google Scholar 

  • Reeves, R. D., Baker, A. J. M., Jaffré, T., Erskine, P. D., Echevarria, G., & van der Ent, A. (2017). A global database for plants that hyperaccumulate metal and metalloid trace elements. The New Phytologist, 218, 407–411.

    Article  Google Scholar 

  • Santos, F. S., Amaral Sobrinho, N. M. B., Mazur, N., Garbisu, C., Barrutia, O., & Becerril, J. M. (2011). Antioxidant response, phytochelatins formation and photoprotective pigment composition in Brachiaria decumbens Stapf subjected to contamination with cd and Zn. Quim Nova, 34, 16–20.

    Article  Google Scholar 

  • Sarwar, N., Saifullah, M. S. S., Zia, M. H., Naeem, A., Bibi, S., & Farid, G. (2010). Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 90, 925–937.

    CAS  Google Scholar 

  • SAS Institute. (2008). Version 9.2. [software]. Cary: SAS Institute.

    Google Scholar 

  • Schützendübel, A., Nikolova, P., Rudolf, C., & Polle, A. (2002). Cadmium and H2O2 induced oxidative stress in Populus × canescens roots. Plant Physiology and Biochemistry, 40, 577–584.

    Article  Google Scholar 

  • van der Ent, A., Baker, A. J. M., Reeves, R. D., Pollard, A. J., & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil, 362, 319–334.

    Article  Google Scholar 

  • Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., Thewys, T., Vassilev, A., Meers, E., Nehnevajova, E., van der Lelie, D., & Mench, M. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research, 16, 765–794.

    Article  CAS  Google Scholar 

  • Vázquez, S., Goldsbrough, P., & Carpena, R. O. (2006). Assessing the relative contributions of phytochelatins and the cell wall to cadmium resistance in white lupin. Physiologia Plantarum, 128, 487–495.

    Article  Google Scholar 

  • Wang, Q., Liang, X., Dong, Y., Xu, L., Zhang, X., Hou, J., & Fan, Z. (2013). Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. Plant Growth Regulation, 69, 11–20.

    Article  CAS  Google Scholar 

  • Wilkins, D. A. (1978). The measurement of tolerance to edaphic factors by means of root growth. New Phytol, 80, 623–633.

    Article  CAS  Google Scholar 

  • Yu, H., Liu, C., Zhu, J., Li, F., Deng, D., Wang, Q., & Liu, C. (2016). Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value. Environmental Pollution, 209, 38–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Stephan Clemens at the University of Bayreuth for the suggestions and comments in order to improve the quality of this study.

Funding

This research was supported by the Coordination for the Improvement of Higher Education Personnel - CAPES [grant #1332394] and São Paulo Research Foundation - FAPESP [grants #2014/16731-7, #2014/18735-0, #2014/03310-3, and #2015/21562-2].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávio Henrique Silveira Rabêlo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 93 kb)

ESM 2

(DOC 50 kb)

ESM 3

(DOC 90 kb)

ESM 4

(DOC 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabêlo, F.H.S., de Andrade Moral, R. & Lavres, J. Integrating Biochemical, Morpho-physiological, Nutritional, and Productive Responses to Cd Accumulation in Massai Grass Employed in Phytoremediation. Water Air Soil Pollut 230, 110 (2019). https://doi.org/10.1007/s11270-019-4167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4167-0

Keywords

Navigation