Skip to main content

Advertisement

Log in

Effects of Groundwater Nitrate and Sulphate Enrichment on Groundwater-Fed Mires: a Case Study

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Mires and peatlands in general are heavily influenced by anthropogenic stressors like acidification, eutrophication, desiccation and fragmentation. Groundwater-fed mires are, in contrast to rainwater-fed mires, often well protected against desiccation due to constant groundwater discharge. Groundwater-fed mires can however be influenced by groundwater pollution such as groundwater nitrate enrichment, a threat which has received minor attention in literature. The present case study demonstrates how groundwater nitrate enrichment can affect the biogeochemical functioning and vegetation composition of groundwater-fed mires through direct nitrogen enrichment and indirect nitrate-induced sulphate mobilisation from geological deposits. Biogeochemical and ecohydrological analyses suggest that the Dutch groundwater-fed mire studied is influenced by different water sources (rainwater; groundwater of local and regional origin) with differing chemical compositions. The weakly buffered and nitrate-enriched groundwater leads, where it reaches the uppermost peat, to nitrogen enrichment, enhanced isotopic nitrogen signatures and altered the vegetation composition at the expense of characteristic species. Nitrate-induced sulphate mobilisation in the aquifer led to enhanced sulphate reduction, sulphide toxicity and elemental sulphur deposition in the mire. Despite sulphate reduction and nitrate enrichment, internal eutrophication did not play an important role, due to relatively low phosphorus concentrations and/or low iron-bound phosphorus of the peat soil. Future management of groundwater-fed mires in nitrate-polluted aquifers should include the reduction of nitrate leaching to the aquifer at the recharge areas by management and ecohydrological restoration measures on both a local and landscape scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aerts, R., Wallen, B., & Malmer, N. (1992). Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. Journal of Ecology, 80, 131–140.

  • Aerts, R., Verhoeven, J. T. A., & Whigham, D. F. (1999). Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology, 80, 2170–2181.

    Article  Google Scholar 

  • Baumann, R. A., Hooijboer, A. E. J., Vrijhoef, A., et al. (2012). Agricultural practice and water quality in the Netherlands in the period 1992-2010. Environmental Monitoring and Assessment, 102, 225–241.

    Google Scholar 

  • Beaudoin, N., Saad, J. K., Van Laethem, C., et al. (2005). Nitrate leaching in intensive agriculture in northern France: effect of farming practices, soils and crop rotations. Agriculture, Ecosystems and Environment, 111, 292–310.

    Article  CAS  Google Scholar 

  • Bedford, B. L. (1996). The need to define hydrologic equivalence at the landscape scale for freshwater wetland mitigation. Ecological Applications, 6, 57–68.

    Article  Google Scholar 

  • Bobbink, R., & Hettelingh, J.-P. (eds.) (2011). Review and revision of empirical critical loads and dose-response relationships: Proceedings of an expert workshop, Noordwijkerhout, 23–25 June 2010. Rijksinstituut voor Volksgezondheid en Milieu RIVM. Utrecht, The Netherlands

  • Bobbink, R., Hornung, M., & Roelofs, J. G. M. (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717–738.

    Article  CAS  Google Scholar 

  • Borken, W., & Matzner, E. (2004). Nitrate leaching in forest soils: an analysis of long-term monitoring sites in Germany. Journal of Plant Nutrition and Soil Science, 167, 277–283.

    Article  CAS  Google Scholar 

  • Böttcher, J., Strebel, O., Voerkelius, S., & Schmidt, H.-L. (1990). Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. Journal of Hydrology, 114, 413–424.

    Article  Google Scholar 

  • Burow, K. R., Nolan, B. T., Rupert, M. G., & Dubrovsky, N. M. (2010). Nitrate in groundwater of the United States, 1991–2003. Environmental Science & Technology, 44, 4988–4997.

    Article  CAS  Google Scholar 

  • Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International, 32, 831–849.

    Article  CAS  Google Scholar 

  • Chaudhuri, S. K., Lack, J. G., & Coates, J. D. (2001). Biogenic magnetite formation through anaerobic biooxidation of Fe (II). Applied and Environmental Microbiology, 67, 2844–2848.

    Article  CAS  Google Scholar 

  • Cirkel, D. G., Van Beek, C., Witte, J. P. M., & Van der Zee, S. (2014). Sulphate reduction and calcite precipitation in relation to internal eutrophication of groundwater fed alkaline fens. Biogeochemistry, 117, 375–393.

    Article  CAS  Google Scholar 

  • Cusell, C., Kooijman, A., & Lamers, L. P. M. (2014). Nitrogen or phosphorus limitation in rich fens? - edaphic differences explain contrasting results in vegetation development after fertilization. Plant and Soil, 384. (1-2) 153–168. https://doi.org/10.1007/s11104-014-2193-7.

    Article  CAS  Google Scholar 

  • De Mars, H., & Wassen, M. J. (1999). Redox potentials in relation to water levels in different mire types in the Netherlands and Poland. Plant Ecology, 140, 41–51.

    Article  Google Scholar 

  • De Mars, H., van der Weijden, B., van Dijk, G., Smolders, A.J.P., Grootjans, A.P., Wolejko, L. (2017) Towards threshold values for nutrients; petrifying springs in South Limburg in northwest European context. Report OBN2016/210-HE, VBNE, Driebergen. https://doi.org/10.13140/RG.2.2.34563.09763.

  • Reddy, K. R., Delaune, R. D. (2008). Biogeochemistry of wetlands: science and applications. CRC, Taylor and Francis Group, Boca Raton

  • van den Elzen, E., van den Berg, L. J. L., van der Weijden, B., et al. (2018). Effects of airborne ammonium and nitrate pollution strongly differ in peat bogs, but symbiotic nitrogen fixation remains unaffected. Science of the Total Environment, 610–611, 732–740. https://doi.org/10.1016/j.scitotenv.2017.08.102.

    Article  CAS  Google Scholar 

  • Di, H. J., & Cameron, K. C. (2002). Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutrient Cycling in Agroecosystems, 64, 237–256.

    Article  CAS  Google Scholar 

  • van Diggelen, R., Middleton, B., Bakker, J., et al. (2006). Fens and floodplains of the temperate zone: Present status, threats, conservation and restoration. Applied Vegetation Science, 9, 157–162.

    Article  Google Scholar 

  • van Dijk, G., Smolders, A. J. P., Fritz, C., et al. (2012). Ecologische gradiënten op de helling in de Brunssummerheide. De Levende Natuur, 113, 174–179.

  • van Dijk, G., van Kleef, H. H., van Duinen, G.-J. A., et al. (2014). De rijke watermacrofauna van het hellingveen op de Brunssummerheide. Natuurhistorisch Maandblad, 103, 293–298.

  • van Dijk, G., Smolders, A. J. P., Loeb, R., et al. (2015). Salinization of coastal freshwater wetlands; effects of constant versus fluctuating salinity on sediment biogeochemistry. Biogeochemistry, 126. (1–2) 71–84. https://doi.org/10.1007/s10533-015-0140-1.

    Article  CAS  Google Scholar 

  • Dise, N. B., & Wright, R. F. (1995). Nitrogen leaching from European forests in relation to nitrogen deposition. Forest Ecology and Management, 71, 153–161.

    Article  Google Scholar 

  • Dise, N.B., Matzner, E. & Forsius, M., (1998). Evaluation of organic horizon C: N ratio as an indicator of nitrate leaching in conifer forests across Europe. Environmental Pollution, 102 (1), 453–456.

  • Dubelaar, C., & Menkovic, A. (1998). Coring information database TNO. http://www.dinoloket.nl. Accessed 20 June 2018.

  • Ferreira, V., Gulis, V., & Graça, M. A. S. (2006). Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia, 149, 718–729.

    Article  Google Scholar 

  • Fraters, B., Hooijboer, A. E. J., Vrijhoef, A., et al (2016) Landbouwpraktijk en waterkwaliteit in Nederland; toestand (2012-2014) en trend (1992-2014): resultaten van de monitoring voor de Nitraatrichtlijn. RIVM Rapport 2016-0076, Bilthoven, the Netherlands

  • Fritz, C., van Dijk, G., Smolders, A. J. P., et al. (2012). Nutrient additions in pristine Patagonian Sphagnum bog vegetation: can phosphorus addition alleviate (the effects of) increased nitrogen loads. Plant Biology, 14(3), 491–499. https://doi.org/10.1111/j.1438-8677.2011.00527.x.

    Article  Google Scholar 

  • Fritz, C., Lamers, L. P. M., Riaz, M., et al. (2014). Sphagnum mosses - masters of efficient N-uptake while avoiding intoxication. PLoS ONE, 9(1), e79991. https://doi.org/10.1371/journal.pone.0079991.

    Article  Google Scholar 

  • Gorham, E. (1955). On some factors affecting the chemical composition of Swedish fresh waters. Geochimica et Cosmochimica Acta, 7, 129–150.

    Article  CAS  Google Scholar 

  • Goulding, K. (2000). Nitrate leaching from arable and horticultural land. Soil Use and Management, 16, 145–151.

    Article  Google Scholar 

  • Grootjans, A. P., Adema, E. B., Bleuten, W., et al. (2006). Hydrological landscape settings of base-rich fen mires and fen meadows: an overview. Applied Vegetation Science, 9, 175–184.

    Article  Google Scholar 

  • Gundersen, P., Callesen, I., & De Vries, W. (1998). Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environmental pollution, 102(1), 403–407.

  • Gundersen, P., Schmidt, I. K., & Raulund-Rasmussen, K. (2006). Leaching of nitrate from temperate forests effects of air pollution and forest management. Environmental Reviews, 14, 1–57.

    Article  CAS  Google Scholar 

  • Haaijer, S. C. M., Lamers, L. P. M., Smolders, A. J. P., et al. (2007). Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands. Geomicrobiology Journal, 24, 391–401.

    Article  CAS  Google Scholar 

  • Hartog, N., Griffioen, J., & van der Weijden, C. H. (2002). Distribution and reactivity of O2-reducing components in sediments from a layered aquifer. Environmental Science & Technology, 36, 2338–2344.

    Article  CAS  Google Scholar 

  • Hausmann, B., Knorr, K.-H., Schreck, K., et al. (2016). Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms. The ISME Journal, 10, 2365.

    Article  CAS  Google Scholar 

  • Hautier, Y., Niklaus, P. A., & Hector, A. (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324(80), 636–638.

    Article  CAS  Google Scholar 

  • Holden, J., Chapman, P. J., & Labadz, J. C. (2004). Artificial drainage of peatlands: Hydrological and hydrochemical process and wetland restoration. Progress in Physical Geography, 28, 95–123.

    Article  Google Scholar 

  • Howden, N. J. K., Burt, T. P., Worrall, F., et al. (2011). Nitrate pollution in intensively farmed regions: what are the prospects for sustaining high-quality groundwater? Water Resources Research, 47. W00L02. https://doi.org/10.1029/2011WR010843.

  • Jauhiainen, J., Wallén, B., & Malmer, N. (1998). Potential NH 4+ and NO 3− uptake in seven Sphagnum species. The New Phytologist, 138, 287–293.

    Article  CAS  Google Scholar 

  • Joosten, H., & Clarke, D. (2002). Wise use of mires and peatlands. International Mire Conservation Group / International Peat Society, Saarijarvi, Finland

  • Kirchmann, H., Johnston, A. E. J., & Bergström, L. F. (2002). Possibilities for reducing nitrate leaching from agricultural land. AMBIO A Journal of the Human Environment, 31, 404–408.

    Article  Google Scholar 

  • van Kleef, H. H., van Duinen, G.-J. A., Verberk, W. C. E. P., et al. (2012). Moorland pools as refugia for endangered species characteristic of raised bog gradients. Journal for Nature Conservation, 20, 255–263.

    Article  Google Scholar 

  • Kooijman, A. M. (2012). Poor rich fen mosses’: Atmospheric N-deposition and P-eutrophication in base-rich fens. Lindbergia, 35, 42–52.

    Google Scholar 

  • Korom, S. F., Schuh, W. M., Tesfay, T., & Spencer, E. J. (2012). Aquifer denitrification and in situ mesocosms: modeling electron donor contributions and measuring rates. Journal of Hydrology, 432, 112–126.

    Article  Google Scholar 

  • Lamers, L. P. M., Tomassen, H. B. M., & Roelofs, J. G. M. (1998). Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands. Environmental Science & Technology, 32, 199–205. https://doi.org/10.1021/es970362f.

    Article  CAS  Google Scholar 

  • Lamers, L. P. M., Bobbink, R., & Roelofs, J. G. M. (2000). Natural nitrogen filter fails in polluted raised bogs. Global Change Biology, 6, 583–586.

    Article  Google Scholar 

  • Lamers, L. P. M., Ten Dolle, G. E., Van Den Berg, S. T. G., et al. (2001). Differential responses of freshwater wetland soils to sulphate pollution. Biogeochemistry, 55, 87–101.

    Article  CAS  Google Scholar 

  • Lamers, L. P. M., Falla, S., Samborska, E. M., et al. (2002a). Factors controlling the extent of eutrophication and toxicity in sulfate-polluted freshwater wetlands. Limnology and Oceanography, 47, 585–593.

    Article  CAS  Google Scholar 

  • Lamers, L. P. M., Smolders, A. J. P., & Roelofs, J. G. M. (2002b). The restoration of fens in the Netherlands. Hydrobiologia, 478, 107–130.

    Article  Google Scholar 

  • Lamers, L. P. M., Van Diggelen, J. M. H., Op Den Camp, H. J. M., et al. (2012). Microbial transformations of nitrogen, sulfur, and iron dictate vegetation composition in wetlands: a review. Frontiers in Microbiology, 3, 156.

    Article  CAS  Google Scholar 

  • Lamers, L. P. M., Govers, L. L., Janssen, I. C. J. M., et al. (2013). Sulfide as a soil phytotoxin—a review. Frontiers in Plant Science, 4, 268.

    Article  Google Scholar 

  • Lamers, L. P. M., Vile, M. A., Grootjans, A. P., et al. (2015). Ecological restoration of rich fens in Europe and North America: from trial and error to an evidence-based approach. Biological Reviews of the Cambridge Philosophical Society, 90, 182–203. https://doi.org/10.1111/brv.12102.

    Article  Google Scholar 

  • Lehmann, M. F., Reichert, P., Bernasconi, S. M., et al. (2003). Modelling nitrogen and oxygen isotope fractionation during denitrification in a lacustrine redox-transition zone. Geochimica et Cosmochimica Acta, 67, 2529–2542.

    Article  CAS  Google Scholar 

  • Limpens, J., Berendse, F., & Klees, H. (2003). N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. The New Phytologist, 157, 339–347.

    Article  Google Scholar 

  • Limpens, J., Berendse, F., & Klees, H. (2004). How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs. Ecosystems, 7, 793–804.

    Article  CAS  Google Scholar 

  • Lucassen, E., Smolders, A. J. P., van der Salm, A. L., & Roelofs, J. G. M. (2004). High groundwater nitrate concentrations inhibit eutrophication of sulphate-rich freshwater wetlands. Biogeochemistry, 67, 249–267.

    Article  CAS  Google Scholar 

  • MacDonald, J. A., Dise, N. B., Matzner, E., et al. (2002). Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Global Change Biology, 8, 1028–1033.

    Article  Google Scholar 

  • Madigan, M. T., & Jung, D. O. (2009). An overview of purple bacteria: systematics, physiology, and habitats. In The purple phototrophic bacteria (pp. 1–15). Springer.

  • Martin, C., Aquilina, L., Gascuel-Odoux, C., et al. (2004). Seasonal and interannual variations of nitrate and chloride in stream waters related to spatial and temporal patterns of groundwater concentrations in agricultural catchments. Hydrological Processes, 18, 1237–1254.

    Article  Google Scholar 

  • Nestler, A., Berglund, M., Accoe, F., et al. (2011). Isotopes for improved management of nitrate pollution in aqueous resources: review of surface water field studies. Environmental Science and Pollution Research, 18, 519–533.

    Article  CAS  Google Scholar 

  • Pester, M., Knorr, K.-H., Friedrich, M. W., et al. (2012). Sulfate-reducing microorganisms in wetlands–fameless actors in carbon cycling and climate change. Frontiers in Microbiology, 3, 72.

    Article  CAS  Google Scholar 

  • Postma, D., Boesen, C., Kristiansen, H., & Larsen, F. (1991). Nitrate reduction in an unconfined sandy aquifer: Water chemistry, reduction processes, and geochemical modeling. Water Resources Research, 27, 2027–2045.

    Article  CAS  Google Scholar 

  • Rivett, M. O., Buss, S. R., Morgan, P., et al. (2008). Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Research, 42, 4215–4232.

    Article  CAS  Google Scholar 

  • Rothe, A., & Mellert, K. H. (2004). Effects of forest management on nitrate concentrations in seepage water of forests in southern Bavaria, Germany. Water, Air, and Soil Pollution, 156, 337–355.

    Article  CAS  Google Scholar 

  • Schaminée, J. H. J., Weeda, E. J., Westhoff, V. (1995). De vegetatie van Nederland. Deel 2: Plantengemeenschappen van wateren, moerassen en natte heiden. Opulus, Uppsala.

  • Schwientek, M., Einsiedl, F., Stichler, W., et al. (2008). Evidence for denitrification regulated by pyrite oxidation in a heterogeneous porous groundwater system. Chemical Geology, 255, 60–67.

    Article  CAS  Google Scholar 

  • Shibata, H., Galloway, J. N., Leach, A. M., et al. (2017). Nitrogen footprints: regional realities and options to reduce nitrogen loss to the environment. Ambio, 46, 129–142.

    Article  CAS  Google Scholar 

  • Sigman, D. M., Altabet, M. A., Michener, R., et al. (1997). Natural abundance-level measurement of the nitrogen isotopic composition of oceanic nitrate: an adaptation of the ammonia diffusion method. Marine Chemistry, 57, 227–242.

    Article  CAS  Google Scholar 

  • Smolders, A. J. P., Lamers, L. P. M., Lucassen, E. C. H. E. T., et al. (2006). Internal eutrophication: How it works and what to do about it - a review. Chemistry and Ecology, 22, 93–111. https://doi.org/10.1080/02757540600579730.

    Article  CAS  Google Scholar 

  • Smolders, A. J. P., Lucassen, E. C., Bobbink, R., et al. (2010). How nitrate leaching from agricultural lands provokes phosphate eutrophication in groundwater fed wetlands: the sulphur bridge. Biogeochemistry, 98, 1–7.

    Article  CAS  Google Scholar 

  • Stites, W., & Kraft, G. J. (2001). Nitrate and chloride loading to groundwater from an irrigated north-central US sand-plain vegetable field. Journal of Environmental Quality, 30, 1176–1184.

    Article  CAS  Google Scholar 

  • Straub, K. L., Benz, M., Schink, B., & Widdel, F. (1996). Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology, 62, 1458–1460.

    CAS  Google Scholar 

  • Succow, M., & Joosten, H. (2001). Landschaftsökologische Moorkunde. Stuttgart: Schweizerbart Science Publishers.

    Google Scholar 

  • Swierstra, W. (2008). Passende beoordeling Sigrano Groeve, 9T3160/R004/WSW/Maas. Maastricht: Eindrapportage, RH-DHV.

    Google Scholar 

  • Thorburn, P. J., Biggs, J. S., Weier, K. L., & Keating, B. A. (2003). Nitrate in groundwaters of intensive agricultural areas in coastal northeastern Australia. Agriculture, Ecosystems and Environment, 94, 49–58.

    Article  CAS  Google Scholar 

  • Tomassen, H. B. M., Smolders, A. J. P., Limpens, J., et al. (2004). Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition? Journal of Applied Ecology, 41, 139–150.

    Article  CAS  Google Scholar 

  • Van Breemen, N. (1995). How Sphagnum bogs down other plants. Trends in Ecology & Evolution, 10, 270–275.

    Article  CAS  Google Scholar 

  • Verberk, W., Van Duinen, G. A., Brock, A. M. T., et al. (2006). Importance of landscape heterogeneity for the conservation of aquatic macroinvertebrate diversity in bog landscapes. Journal for Nature Conservation, 14, 78–90.

    Article  Google Scholar 

  • Verhoeven, J. T. A., Koerselman, W., & Meuleman, A. F. M. (1996). Nitrogen-or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Trends in Ecology & Evolution, 11, 494–497.

    Article  CAS  Google Scholar 

  • Wassen, M. J., Venterink, H. O., Lapshina, E. D., & Tanneberger, F. (2005). Endangered plants persist under phosphorus limitation. Nature, 437, 547.

    Article  CAS  Google Scholar 

  • Wheeler, B. D., & Proctor, M. C. F. (2000). Ecological gradients, subdivisions and terminology of north-west European mires. Journal of Ecology, 88, 187–203.

    Article  Google Scholar 

  • Zhang, Y.-C., Slomp, C. P., Broers, H. P., et al. (2009). Denitrification coupled to pyrite oxidation and changes in groundwater quality in a shallow sandy aquifer. Geochimica et Cosmochimica Acta, 73, 6716–6726.

    Article  CAS  Google Scholar 

  • Zhang, Y.-C., Slomp, C. P., Broers, H. P., et al. (2012). Isotopic and microbiological signatures of pyrite-driven denitrification in a sandy aquifer. Chemical Geology, 300, 123–132.

    Article  Google Scholar 

  • Zhu, B., van Dijk, G., Fritz, C., et al. (2012). Anaerobic oxidization of methane in a minerotrophic peatland: Enrichment of nitrite-dependent methane-oxidizing bacteria. Applied and Environmental Microbiology, 78. https://doi.org/10.1128/AEM.02102-12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge J. Graafland, R. Kuiperij, J. Claas, C. Bufe, B. Zhu, M. Poelen, N. Hofland, J. Loermans, M. Houtekamer, P. van Breugel, P. van der Ven and J. Eijgensteijn for assistance in the field and the laboratory. We acknowledge Natuurmonumenten for their permission to carry out research on the Brunssummerheide and M. Mouthaan, L. Wortel, C. Burger and C. Geujen for assistance in the field and field relevant information. C. Fritz was funded by FACCE-JPI ‘Peatwise’ (NWO grant number ALW.GAS.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. van Dijk.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 386 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Dijk, G., Wolters, J., Fritz, C. et al. Effects of Groundwater Nitrate and Sulphate Enrichment on Groundwater-Fed Mires: a Case Study. Water Air Soil Pollut 230, 122 (2019). https://doi.org/10.1007/s11270-019-4156-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4156-3

Keywords

Navigation