Skip to main content

Advertisement

Log in

Improving Biohydrogen Evolution from Glucose with Magnetic Activated Carbon

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Magnetic activated carbon (MAC) was fabricated to improve biohydrogen (bio-H2) production. The MAC exhibited higher biocatalytic capability and better microbial immobilization than activated carbon (AC) during the bio-H2 process. Glucose supplemented with 200 mg/L MAC obtained the highest H2 yield of 214 mL/g glucose, much higher than that (130 mL/g glucose) of the control group without MAC. Suitable dosage such as 300 mg/L AC or 200 mg/L MAC promoted volatile fatty acid (VFA) formation and H2 generation. Besides, the metabolites showed that AC or MAC did not change the bio-H2 evolution pathway. Some possible biochemical mechanisms were as follows: MAC served as a microbial carrier to promote cell colonization and electron transfer rate, and it released Fe3+ to enhance glucose acidogenesis and Fe2+ to increase microbial concentration and activity in the bio-H2 evolution.

Magnetic activated carbon (MAC) was fabricated and subsequently used in bio-H2 process through glucose-fed anaerobic mixed bacteria at 37 °C. The MAC acted as a carrier of anaerobes to promote cell growth and electron transfer rate, and released Fe3+ to increase glucose acidogenesis and Fe2+ to improve microbial concentration and activity in the bio-H2 evolution process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alatiqi, I. M., Hamoda, M. F., & Dadkhah, A. A. (1998). Kinetic analysis of thermophilic anaerobic digestion of wastewater sludge. Water Air & Soil Pollution, 107(1–4), 393–407.

    Article  CAS  Google Scholar 

  • Amin, M. M., Bina, B., Taheri, E., Zare, M. R., Ghasemian, M., Ginkel, S. W. V., & Fatehizadeh, A. (2017). Metabolism and kinetic study of bioH2 production by anaerobic sludge under different acid pretreatments. Process Biochemistry, 61, 24–29.

    Article  CAS  Google Scholar 

  • Azwar, M. Y., Hussain, M. A., & Abdul-Wahab, A. K. (2014). Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review. Renewable & Sustainable Energy Reviews, 31, 158–173.

    Article  CAS  Google Scholar 

  • Budiman, P. M., & Wu, T. Y. (2018). Role of chemicals addition in affecting biohydrogen production through photofermentation. Energy Conversion & Management, 165, 509–527.

    Article  CAS  Google Scholar 

  • Chen, J. L., Steele, T. W. J., & Stuckey, D. C. (2015). Modeling and application of a rapid fluorescence-based assay for biotoxicity in anaerobic digestion. Environmental Science Technology, 49, 1363–1371.

    Google Scholar 

  • Dang, Y., Sun, D., Woodard, T. L., Wang, L. Y., Nevin, K. P., & Holmes, D. E. (2017). Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials. Bioresource Technology, 238, 30–38.

    Article  CAS  Google Scholar 

  • Engliman, N. S., Abdul, P. M., Wu, S. Y., & Jahim, J. M. (2017). Influence of iron (II) oxide nanoparticle on biohydrogen production in thermophilic mixed fermentation. International Journal of Hydrogen Energy, 42(45), 27482–22793.

    Article  CAS  Google Scholar 

  • Fagbohungbe, M. O., Herbert, B. M. J., Hurst, L., Li, H., Usmani, S. Q., & Semple, K. T. (2016). Impact of biochar on the anaerobic digestion of citrus peel waste. Bioresource Technology, 216, 142–149.

    Article  CAS  Google Scholar 

  • Fagbohungbe, M. O., Herbert, B. M. J., Hurst, L., Ibeto, C. N., Li, H., Usmani, S. Q., & Semple, K. T. (2017). The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Management, 61, 236–249.

    Article  CAS  Google Scholar 

  • Feng, Q., Song, Y.-C., Yoo, K., Kuppanan, N., Subudhi, S., & Lal, B. (2017). Influence of neutralization in acidic distillery wastewater on direct interspecies electron transfer for methane production in an upflow anaerobic bioelectrochemical reactor. International Journal of Hydrogen Energy, 42, 27774–27783.

    Article  CAS  Google Scholar 

  • Gadhe, A., Sonawane, S. S., & Varma, M. N. (2015). Influence of nickel and hematite nanoparticle powder on the production of biohydrogen from complex distillery wastewater in batch fermentation. International Journal of Hydrogen Energy, 40(34), 10734–10743.

    Article  CAS  Google Scholar 

  • Gong, W. J., Liang, H., & Li, W. Z. (2011). Selection and evaluation of biofilm carrier in anaerobic digestion treatment of cattle manure. Energies, 36, 3572–3578.

    Article  CAS  Google Scholar 

  • Gong, Y., Wang, L., Liu, J., Tang, J., & Zhao, D. (2016). Removal of aqueous perfluorooctanoic acid (PFOA) using starch-stabilized magnetite nanoparticles. Science of the Total Environment, 562, 191–200.

    Article  CAS  Google Scholar 

  • Han, S. K., Kim, S. H., & Shin, H. S. (2005). UASB treatment of wastewater with VFA and alcohol generated during hydrogen fermentation of food waste. Process Biochemistry, 40, 2897–2905.

    Article  CAS  Google Scholar 

  • Han, H., Cui, M., Wei, L., Yang, H., & Shen, J. (2011). Enhancement effect of hematite nanoparticles on fermentative hydrogen production. Bioresource Technology, 102, 7903–7909.

    Article  CAS  Google Scholar 

  • Han, W., Liu, D. N., Shi, Y. W., Tang, J. H., Li, Y. F., & Ren, N. Q. (2015). Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors. Bioresource Technology, 180, 54–58.

    Article  CAS  Google Scholar 

  • Han, W., Ye, M., Zhu, A. J., Huang, J. G., Zhao, H. T., & Li, Y. F. (2016). A combined bioprocess based on solid-state fermentation for dark fermentative hydrogen production from food waste. Journal of Cleaner Production, 112, 3744–3749.

    Article  CAS  Google Scholar 

  • Hwang, Y., Sivagurunathan, P., Lee, M. K., Yun, Y. M., Song, Y. C., & Kim, D. H. (2019). Enhanced hydrogen fermentation by zero valent iron addition. International Journal of Hydrogen Energy, 44(6), 3387–3394.

    Article  CAS  Google Scholar 

  • Jiang, X., Hu, J., Lieber, A. M., Jackan, C. S., Biffinger, J. C., Fitzgerald, L. A., Ringeisen, B. R., & Lieber, C. M. (2014). Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano Letters, 14, 6737–6742.

    Article  CAS  Google Scholar 

  • Jing, Y., Wan, J., Angelidaki, I., Zhang, S., & Luo, G. (2017). iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite. Water Research, 108, 212–221.

    Article  CAS  Google Scholar 

  • Karadag, D., & Puhakka, J. A. (2010). Enhancement of anaerobic hydrogen production by iron and nickel. International Journal of Hydrogen Energy, 35(16), 8554–8560.

    Article  CAS  Google Scholar 

  • Kim, S. H., Han, S. K., & Shin, H. S. (2006). Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochemistry, 41, 199–207.

    Article  CAS  Google Scholar 

  • Kothari, R., Singh, D. P., Tyagi, V. V., & Tyagi, S. K. (2012). Fermentative hydrogen production-An alternative clean energy source. Renewable & Sustainable Energy Reviews, 16, 2337–2346.

    Article  CAS  Google Scholar 

  • Lay, J. J., Lee, Y. J., & Noike, T. (1999). Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research, 33, 2579–2586.

    Article  CAS  Google Scholar 

  • Lin, R., Cheng, J., Ding, L., Song, W., Liu, M., Zhou, J., & Cen, K. (2016). Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes. Bioresource Technology, 207, 213–219.

    Article  CAS  Google Scholar 

  • Liu, Z., Lv, F., Zheng, H., Zhang, C., Wei, F., & Xing, X. H. (2012a). Enhanced hydrogen production in a UASB reactor by retaining microbial consortium onto carbon nanotubes (CNTs). International Journal of Hydrogen Energy, 37, 10619–10626.

    Article  CAS  Google Scholar 

  • Liu, Y., Zhang, Y., Quan, X., Li, Y., Zhao, Z., Meng, X., & Chen, S. (2012b). Optimization of anaerobic acidogenesis by adding Fe0 powder to enhance wastewater treatment. Chemical Engineering Journal, 192, 179–185.

    Article  CAS  Google Scholar 

  • Mishra, P., Singh, L., Wahid, Z. A., Krishnan, S., Rana, S., Islam, M. A., Sakinah, M., Ameen, F., & Syed, A. (2018). Photohydrogen production from dark-fermented palm oil mill effluent (DPOME) and statistical optimization: Renewable substrate for hydrogen. Journal of Cleaner Production, 199, 11–17.

    Article  CAS  Google Scholar 

  • Mohanraj, S., Kodhaiyolii, S., Rengasamy, M., & Pugalenthi, V. (2014). Phytosynthesized iron oxide nanoparticles and ferrous iron on fermentative hydrogen production using Enterobacter cloacae: Evaluation and comparison of the effects. International Journal of Hydrogen Energy, 39, 11920–11929.

    Article  CAS  Google Scholar 

  • Mostafa, A., El-Dissouky, A., Fawzy, A., Peu, P., Roux, S. L., & Tawfik, A. (2016). Magnetite/grapheme oxide nano-composite for enhancement of hydrogen production from gelatinaceous wastewater. Bioresource Technology, 216, 520–528.

    Article  CAS  Google Scholar 

  • Mu, Y., Wang, G., & Yu, H. Q. (2006). Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures. Bio/Technology, 97(11), 1302–1307.

    CAS  Google Scholar 

  • Mumme, J., Srocke, F., Heeg, K., & Werner, M. (2014). Use of biochars in anaerobic digestion. Bioresource Technology, 164, 189–197.

    Article  CAS  Google Scholar 

  • Nasr, M., Tawfik, A., Ookawara, S., Suzuki, M., Kumari, S., & Bux, F. (2015). Continuous biohydrogen production from starch wastewater via sequential dark-photo fermentation with emphasize on maghemite nanoparticles. Journal of Industrial & Engineering Chemistry, 21, 500–506.

    Article  CAS  Google Scholar 

  • Park, J. H., Yoon, J. J., Park, H. D., Kim, Y. J., Lim, D. J., & Kim, S. H. (2006). Feasibility of biohydrogen production from Gelidium amansii. International Journal of Hydrogen Energy, 36, 13997–14003.

    Article  Google Scholar 

  • Qin, Y., Wang, H., Li, X., Cheng, J. J., & Wu, W. (2017). Improving methane yield from organic fraction of municipal solid waste (OFMSW) with magnetic rice-straw biochar. Bioresource Technology, 245, 1058–1066.

    Article  CAS  Google Scholar 

  • Rattanachueskul, N., Saning, A., Kaowphong, S., Chumha, N., & Chuenchom, L. (2017). Magnetic carbon composites with a hierarchical structure for adsorption of tetracycline, prepared from sugarcane bagasse via hydrothermal carbonization coupled with simple heat treatment process. Bioresource Technology, 266, 164–172.

    Article  Google Scholar 

  • Saraphirom, P., & Reungsang, A. (2011). Biological hydrogen production from sweet sorghum syrup by mixed cultures using an anaerobic sequencing batch reactor (ASBR). International Journal of Hydrogen Energy, 36(14), 8765–7873.

    Article  CAS  Google Scholar 

  • Sunyoto, N. M. S., Zhu, M., Zhang, Z., & Zhang, D. (2016). Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste. Bioresource Technology, 219, 29–36.

    Article  CAS  Google Scholar 

  • Taherdanak, M., Zilouei, H., & Karimi, K. (2016). The effects of Fe0 and Ni0 nanoparticles versus Fe2+ and Ni2+ ions on dark hydrogen fermentation. International Journal of Hydrogen Energy, 41, 167–173.

    Article  CAS  Google Scholar 

  • Van Ginkel, S. W., & Logan, B. (2005). Increased biological hydrogen production with reduced organic loading. Water Research, 39(16), 3819–3826.

    Article  Google Scholar 

  • Wang, J., & Wan, W. (2008). Effect of Fe2+ concentration on fermentative hydrogen production by mixed cultures. International Journal of Hydrogen Energy, 33(4), 215–220.

    Google Scholar 

  • Yang, Y., Dong, H., Wang, Y., He, C., Wang, Y., & Zhang, X. (2018). Synthesis of octahedral like Cu-BTC derivatives derived from MOF calcined under different atmosphere for application in CO oxidation. Journal of Solid State Chemistry, 258, 582–587.

    Article  CAS  Google Scholar 

  • Zaidi, A. A., RuiZhe, F., Shi, Y., Khan, S. Z., & Mushtaq, K. (2018). Nanoparticles augmentation on biogas yield from microalgal biomass anaerobic digestion. International Journal of Hydrogen Energy, 43(31), 14202–14213.

    Article  CAS  Google Scholar 

  • Zhang, Z. P., Show, K. Y., Taya, J. H., Liang, D. T., & Lee, D. J. (2008). Biohydrogen production with anaerobic fluidized bed reactors-a comparison of biofilm-based and granule-based systems. International Journal of Hydrogen Energy, 33, 1559–1564.

    Article  CAS  Google Scholar 

  • Zhang, C., Lv, F. X., & Xing, X. H. (2011). Bioengineering of the Enterobacter aerogenes strain for biohydrogen production. Bioresource Technology, 102, 8344–8349.

    Article  CAS  Google Scholar 

  • Zhang, J., Wang, Q., & Jiang, J. (2013). Lime mud from paper-making process addition to food waste synergistically enhances hydrogen fermentation performance. International Journal of Hydrogen Energy, 38(6), 2738–2745.

    Article  CAS  Google Scholar 

  • Zhang, L., Zhang, L., & Li, D. (2015a). Enhanced dark fermentative hydrogen production by zero-valent iron activated carbon microelectrolysis. International Journal of Hydrogen Energy, 40, 12201–12208.

    Article  CAS  Google Scholar 

  • Zhang, J., Zhang, J., & Zang, L. (2015b). Thermophilic bio-hydrogen production from corn-bran residue pretreated by calcined-lime mud from paper-making process. Bioresource Technology, 198, 564–570.

    Article  CAS  Google Scholar 

  • Zhang, J., Fan, C., & Zang, L. (2017). Improvement of hydrogen production from glucose by ferrous iron and biocar. Bioresource Technology, 245, 98–105.

    Article  CAS  Google Scholar 

  • Zhang, J., Fan, C., Zhang, H., Wang, Z., Zhang, J., & Song, M. (2018a). Ferric oxide/ carbon nanoparticles enhanced bio-hydrogen production from glucose. International Journal of Hydrogen Energy, 43, 8729–8738.

    Article  CAS  Google Scholar 

  • Zhang, J., Zhao, W., Zhang, H., Wang, Z., Fan, C., & Zang, L. (2018b). Recent achievements in enhancing anaerobic digestion with carbon-based functional materials. Bioresource Technology, 266, 555–567.

    Article  CAS  Google Scholar 

  • Zhang, J., Yao, C., & Fan, C. (2018c). Enhancement of solubility and biohydrogen production from sewage sludge with lime mud filtrate. Water Air & Soil Pollution, 229, 129–136.

    Article  Google Scholar 

  • Zheng, J., Liu, Z. Q., Zhao, X. S., Liu, M., Liu, x., & Chu, W. (2012). One-step solvothermal synthesis of Fe3O4@C core-shell nanoparticles with tunable sizes. Nanotechnology, 23, 165601–165609.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Shandong Province Natural Science Foundation-China (ZR2016EEM33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jishi Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Magnetic activated carbon (MAC) has higher biocatalytic capacity than AC.

• Suitable dosage of MAC promoted microbial activity and electron transfer.

• MAC could facilitate hydrogen-producing bacteria richness and growth.

• The highest H2 yield of 214 mL/g glucose was obtained at 200 mg/L MAC.

• The modified Gompertz model fitted well the bio-H2 evolution process.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Zhang, J. & Zang, L. Improving Biohydrogen Evolution from Glucose with Magnetic Activated Carbon. Water Air Soil Pollut 230, 100 (2019). https://doi.org/10.1007/s11270-019-4155-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4155-4

Keywords

Navigation