Skip to main content
Log in

The Influence of Soil Mechanical Redesigning on Polycyclic Aromatic Hydrocarbon (PAH) Release: a Column Approach

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Intrinsic molecular parameters (solubility, chemical structure, etc.) as well as physico-chemical properties of the medium (lithology, permeability, organic matter content, etc.) and hydrological specificities (rainfall regimes) are usually put forward to characterize the mobility of polycyclic aromatic hydrocarbons (PAHs). Here, we study the role of aggregate mechanical redesigning on the ability of anciently impacted soils to release polycyclic hydrocarbons. Soil columns were collected in a heavily impacted wasteland (Villeneuve la Garenne, France) for this purpose and submitted to continuous and sequential leaching regimes. The soil’s organo-mineral properties were characterized with suited techniques (Rock Eval, FT/IR) prior to the leaching experiments. The release of 18 PAHs (naphthalene, 1 methyl naphthalene, 2 methyl naphthalene, acenaphtylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz(a)anthracene, chrysene, benz(b)fluoranthene, benz(k)fluoranthene; benzo(a)pyrene, indeno[1,2,3-cd]pyrene, dibenz(a,h)anthracene, benzo(g,h,i) perylene) was assayed under non-disturbed configuration of the columns, then under reshuffled (10 mm), and finely sieved (4 mm) states in order to evaluate the impact of grain redistribution on the mobilization of the aromatic molecules. For both sequential and continuous leaching regimes, results showed a substantial increase of released amounts when the systems were disturbed. Significant increases of PAH concentrations were indeed observed when the columns were reshuffled (10 mm). The release was more intense when the mechanical reworking was performed with a smaller threshold (4 mm). Greater accessibility of the molecules drove very likely PAH release during the mechanical reworking operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abelmann, K., Kleineidam, S., Knicker, H., Grathwohl, P., & Kögel-Knabner, I. (2005). Sorption of HOC in soils with carbonaceous contamination: influence of organic-matter composition. Journal of Plant Nutrition and Soil Sciences, 168, 293–306.

    Article  CAS  Google Scholar 

  • Amellal, N., Portal, J. M., & Berthelin, J. (2001). Effect of soil structure on the bioavailability of polycyclic aromatic hydrocarbons within aggregates of a contaminated soil. Applied Geochemistry, 16, 1611–1619.

    Article  CAS  Google Scholar 

  • Armstrong, B., Hutchinson, E., Unwin, J., & Fletcher, T. (2004). Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environmental Health Perspectives, 112, 970–978.

    Article  CAS  Google Scholar 

  • Bader, R. A., Silvers, A. L., & Zhang, N. (2011). Polysialic acid-based micelles for encapsulation of hydrophobic drugs. Biomacromolecules, 12, 314–320.

    Article  CAS  Google Scholar 

  • Benhabib, K., Simonnot, M. O., Faure, P., & Sardin, M. (2017). Evidence of colloidal transport of PAHs during columns experiments run with contaminated soil samples. Environmental Science and Pollution Research, 24, 9220–9228.

    Article  CAS  Google Scholar 

  • Boffetta, P., Jourenkova, N., & Gustavsson, P. (1997). Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes and Control, 8, 444–472.

    Article  CAS  Google Scholar 

  • Burd, A. B., Frey, S., Cabre, A., Ito, T., Levine, N. M., Lonborg, C., Long, M., Mauritz, M., Thomas, R. Q., Stephens, B. M., & Van Walleghem, T. (2016). Terrestrial and marine perspectives on modelling organic matter degradation pathways. Global Change Biology, 22, 121–136.

    Article  Google Scholar 

  • Chaîneau, C. H., Yepremian, C., Vidalie, J. F., Ducreux, J., & Ballerini, D. (2002). Bioremediation of crude oil-polluted soil: biodegradationn leaching and toxicity assessments. Water, Air, Soil and Pollution, 144, 419–440.

    Article  Google Scholar 

  • Chang, K. C., Lee, C. L., Hsieh, P. C., Brimblecombe, P., & Kao, S. M. (2015). pH and ionic strength effects on the binding constant between a nitrogen containing polycyclic aromatic compound and humic acid. Environmental Science and Pollution Research, 22, 13234–13242.

    Article  CAS  Google Scholar 

  • Chefetz, B., Deshmukh, A. P., Hatcher, P. G., & Guthrie, E. A. (2000). Pyrene sorption by natural organic matter. Environmental Science and Technology, 34, 2925–2930.

    Article  CAS  Google Scholar 

  • Chin, Y. P., Aiken, G. R., & Danielsen, K. M. (1997). Binding of pyrene to aquatic and commercial humic substances: the role of molecular weight and aromaticity. Environmental Science and Technology, 31, 1630–1635.

    Article  CAS  Google Scholar 

  • Chiou, C. T., McGroddy, S. E., & Kile, D. E. (1998). Partition characteristics of polycyclic aromatics hydrocarbons on soils and sediments. Environmental Science and Technology, 32, 264–269.

    Article  CAS  Google Scholar 

  • De Paolis, F., & Kukkonen, J. (1997). Binding of organic pollutants to humic and fulvic acids: influence of pH and the structure of humic material. Chemosphere, 34, 1693–1704.

    Article  Google Scholar 

  • Eggleton, J., & Thomas, K. V. (2004). A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International, 30, 973–980.

    Article  CAS  Google Scholar 

  • Enell, A., Lundstedt, S., Arp, H. P. H., Josefsson, S., Cornelissen, G., Wik, O., & Kleja, D. B. (2016). Combining leaching and passive sampling to measure the mobility and distribution between pore water, DOC and colloids of native oxy-PAHs, N-PACs and PAHs in historically contaminated soils. Environmental Science and Technology, 50, 11797–11805.

    Article  CAS  Google Scholar 

  • Espitalié, J., Laporte, J. L., Madec, M., Marquis, F., Leplat, P., Paulet, J., & Boutefeu, A. (1977). Méthode rapide de caractérisation des roches mères, de leur potentiel pétrolier et de leur degré d’évolution. Revue de l'Institut Français du Pétrole, 32, 23–42.

    Article  Google Scholar 

  • Ferreira, I. D., Prieto, T., Freitas, J. G., Thomson, N. R., Nantes, I. L., & Bechara, J. H. (2017). Natural persulfate activation for anthracene remediation in tropical environments. Water, Air, Soil and Pollution, 228, 146.

    Article  Google Scholar 

  • Gunasekara, A. S., & Xing, B. (2003). Sorption and desorption of naphthalene by soil organic matter: importance of aromatic and aliphatic components. Journal of Environmental Quality, 32, 240–246.

    Article  CAS  Google Scholar 

  • Hong, L., Gosh, U., Mahajan, T., Zare, R. N., & Luthy, R. G. (2003). PAHs sorption mechanism and portioning behavior in lampblack-impacted soils from former oil-gas plant sites. Environmental Science and Technology, 37, 3625–3634.

    Article  CAS  Google Scholar 

  • Humel, S., Schmidt, S. N., Sumetzbzrger-Hasinger, M., Mayer, P., & Loibner, A. P. (2017). Enhanced accessibility of PAHs and heterocyclic PAHs in industrially contaminated soik after passive dosing of a competitive sorbate. Environmental Science and Technology, 14, 8017–8026.

    Article  Google Scholar 

  • Hwang, S., Ramirez, N., Cutright, T. J., & Ju, L. K. (2003). The role of soil properties in pyrene sorption and desorption. Water, Air and Soil Pollution, 143, 65–80.

    Article  CAS  Google Scholar 

  • Jagadamma, S., Mayes, M. A., Zinn, Y. L., Gisladottir, G., & Russel, A. E. (2014). Sorption of organic carbon compounds to the fine fraction of surface and subsurface soils. Geoderma, 213, 79–86.

    Article  CAS  Google Scholar 

  • Johnson, M. D., Huang, W., & Weber, W. J., Jr. (2001). A distributed reactivity model for sorption of soils and sediments. Simulated diagenesis of natural sediment organic matter and its impact on sorption/desorption equilibria. Environmental Science and Technology, 35, 1680–1687.

    Article  CAS  Google Scholar 

  • Josefsson, S., Arp, H. P. H., Kleja, D. B., Enell, A., & Lundstedt, S. (2015). Determination of polyixymethylene (POM)—water partition coefficients for oxy-PAHs and PAHs. Chemosphere, 119, 1268–1274.

    Article  CAS  Google Scholar 

  • Kleineidam, S., Rugner, H., & Grathwohl, P. (2004). Desorption kinetics of phenanthrene in aquifer material lacks hysteresis. Environmental Science and Technology, 38, 4169–4175.

    Article  CAS  Google Scholar 

  • Kopinke, F. D., Ramus, K., Poerschmann, J., & Georgi, A. (2011). Kinetics of desorption of organic compounds from dissolved organic matter. Environmental Science and Technology, 45, 1013–1019.

    Article  Google Scholar 

  • Kulovaara, M. (1993). Distribution of DDT and benzo (a) pyrene between water and dissolved organic matter in natural humic water. Chemosphere, 27, 2333–2340.

    Article  CAS  Google Scholar 

  • Kuppusamy, S., Thavamani, P., Venkateswarlu, K., Lee, Y. B., Naidu, R., & Megharaj, M. (2017). Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constrains, emerging trends and future directions. Chemosphere, 168, 944–968.

    Article  CAS  Google Scholar 

  • Lasota, J., & Blonska, E. (2017). Polycyclic aromatic hydrocarbons content in contaminated forest soils with different humus types. Water, Air, Soil and Pollution, 229, 204.

    Article  Google Scholar 

  • Le Forestier, L., Muller, F., Villiéras, F., & Pelletier, M. (2010). Textural and hydration properties of a synthetic montmorillonite compared with a natural Na-exchanged clay analogue. Applied Clay Science, 48, 18–25.

    Article  Google Scholar 

  • Liu, S. H., Zeng, G. M., Niu, Q. Y., Liu, Y., Zhou, L., & Jiang, L. H. (2017). Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review. Bio/Technology, 224, 25–33.

    CAS  Google Scholar 

  • Luo, L., Lin, S., Huang, H., & Zhang, S. (2012). Relationships between aging of PAHs and soil properties. Environmental Pollution, 170, 177–182.

    Article  CAS  Google Scholar 

  • Mahamat Ahmat, A., Boussafir, M., Le Milbeau, C., Guégan, R., Valdès, J., Guiñez, M., et al. (2016). Organic matter-clay interaction along a seawater column of the eastern Pacific upwelling system (Antofagasta bay, Chile): implications for source rock organic matter preservation. Marine Chemistry, 179, 23–33.

    Article  CAS  Google Scholar 

  • Mahamat Ahmat, A., Boussafir, M., Le Milbeau, C., Guégan, R., De Oliveira, T., et al. (2017). Organic matter and clay interaction in a meromictic lake: implications for source rock OM preservation (Lac Pavin, Puy-de-Dôme, France). Organic Geochemistry, 109, 45–54.

    Article  Google Scholar 

  • Mao, J. D., Hundal, S., Thompson, M. L., & Schmidt-Rohr, K. (2002). Correlation of poly(methylene)-rich amorphous aliphatic domain in humic substances with sorption of a nonpolar organic contaminant, phenanthrene. Environmental Science and Technology, 36(5), 29–36.

    Article  Google Scholar 

  • Maxin, C. R., & Kögel-Knabner, I. (1995). Partitioning of polyclyclic aromatic hydrocarbons (PAHs) to water-soluble organic matter. European Journal of Soil Science, 46, 193–204.

    Article  CAS  Google Scholar 

  • Mayer, L. M. (1994). Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chemical Geology, 114, 347–363.

    Article  CAS  Google Scholar 

  • Means, J. C. (1980). Influence of salinity upon sediment-water partition of polycyclic aromatic hydrocarbons. Marine Chemistry, 51, 3–16.

    Article  Google Scholar 

  • Mikutta, R., Schaumann, G. E., Gildemeister, D., Bonneville, S., Kramer, M. G., Chadwick, O. A., et al. (2009). Biogeochemistry of mineral-organic associations across a long-term mineralogical soil gradient (0.3–4100 kyr), Hawaiian Islands. Geochimica et Cosmochimica Acta, 73, 2034–2060.

    Article  CAS  Google Scholar 

  • Morehead, N. R., Eadie, B. J., Lake, B., Landrum, P. F., & Berner, D. (1986). The sorption of PAHs onto dissolved organic matter in Lake Michigan waters. Chemosphere, 15, 403–412.

    Article  CAS  Google Scholar 

  • Nkansah, M. A., Christy, A. A., Barth, T., & Francis, G. W. (2012). The use of light weight expanded clay aggregate (LECA) as sorbent for PAHs removal from water. Journal of Hazardous Materials, 217–218, 360–365.

    Article  Google Scholar 

  • Oh, J. Y., Choi, S. D., Kwon, H. O., & Lee, S. E. (2016). Leaching of polycyclic aromatic hydrocarbons (PAHs) from industrial wastewater sludge by ultrasonic treatment. Ultrasonic Sonochermistry, 33, 61–66.

    Article  CAS  Google Scholar 

  • Oren, A., & Chefetz, B. (2012). Successive sorption/desorption cycles of dissolved organic matter in mineral soil matrices. Geoderma, 189-190, 108–115.

    Article  CAS  Google Scholar 

  • Pan, B., Xing, B., Tao, S., Liu, W., Lin, X., & Xiao, Y. (2007). Effect of physical forms of soil organic matter on phenantrene sorption. Chemosphere, 68, 1262–1269.

    Article  CAS  Google Scholar 

  • Perminova, I. V., Grechishcheva, N. Y., & Petrosyan, V. S. (1999). Relationships between structure and binding affinity of humic substance for polycyclic aromatic hydrocarbons: relevance of molecular descriptors. Environmental Science and Technology, 35, 3781–3787.

    Article  Google Scholar 

  • Perminova, I. V., Grechishcheva, N. Y., Kovalevskii, D. V., Kudry-Avtsev, A. V., Petrosyan, V. S., & Matorin, D. N. (2001). Quantification and prediction of the detoxifying properties of humic substances related to their chemical binding to polycyclic aromatic hydrocarbons. Environmental Science and Technology, 35, 3841–3848.

    Article  CAS  Google Scholar 

  • Qadeer, S., Anjum, M., Khalid, A., Waqas, M., Batool, A., & Mahmood, T. (2017). A dialogue on perspectives of biochar applications and its environmental risks. Water, Air, Soil and Pollution, 228, 281.

    Article  Google Scholar 

  • Raber, B., & Kögel-Knabner, I. (1997). Influence of origin and properties of dissolved organic matter on the partition of PAH. European Journal of Soil Science, 48, 443–455.

    Article  CAS  Google Scholar 

  • Raber, B., Kögel-Knabner, I., Stein, C., & Klem, D. (1998). Partitioning of polycyclic aromatic hydrocarbons to dissolved organic matter from different soils. Chemosphere, 36, 79–97.

    Article  CAS  Google Scholar 

  • Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: contribution, emission factors and regulation. Atmospheric Environment, 42, 2895–2921.

    Article  CAS  Google Scholar 

  • Sabah, E., & Ouki, S. (2017). Sepiolite and sepiolite-bound humic acid interactions in alkaline media and the mechanism of the formation of sepiolite-humic acid complexes. International Journal of Mineral Processing, 162, 1–92. https://doi.org/10.1016/j.minpro.2017.03.005.

    Article  CAS  Google Scholar 

  • Salloum, M. J., Chefetz, B., & Hatcher, P. G. (2002). Phenantrene sorption by aliphatic rich natural organic matter. Environmental Science and Technology, 36, 1953–1958.

    Article  CAS  Google Scholar 

  • Singh, M., Sarkar, B., Hussain, S., Ok, Y. S., Bolan, N. S., & Churchman, G. J. (2017). Influence of physic-chemical properties of soil clay fraction on the retention of dissolved organic carbon. Environmental Geochemistry and Health, 39, 1335–1350. https://doi.org/10.1007/s10653-017-9939-0.

    Article  CAS  Google Scholar 

  • Shen, H. (2013). Polycyclic aromatic hydrocarbons. Their global atmospheric emissions, transport and lung cancer risk. Thesis pp 187, College of Urban and Environmental Sciences, Peking University, Beijing, China.

  • Totsche, K. U., Jann, S., & Kogel-Knabner, I. (2006). Release of polycyclic aromatic hydrocarbons, dissolved organic carbon, and suspended matter from disturbed NAPL-contaminated gravelly soil material. Vadose Zone Journal, 5, 469–479.

    Article  CAS  Google Scholar 

  • Tremblay, L., Kohl, S. D., Rice, J. A., & Gagné, J. P. (2005). Effects of temperature, salinity, and dissolved substances on the sorption of polycyclic aromatic hydrocarbons to estuarine particles. Marine Chemistry, 96, 21–34.

    Article  CAS  Google Scholar 

  • Walter, T., Ederer, H. J., Forst, C., & Stieglitz, L. (2000). Sorption of selected polycyclic aromatic hydrocarbons on soil in oil-contaminated systems. Chemosphere, 41, 387–397.

    Article  CAS  Google Scholar 

  • Wehrer, M., & Totsche, K. U. (2005). Determination of effective release rates of polycyclic aromatic hydrocarbons and dissolved organic carbon by column outflow experiments. European Journal of Soil Science, 56, 803–813.

    CAS  Google Scholar 

  • Wherer, M., & Totsche, K. U. (2009). Difference in PAH release processes from tar-oil contaminated soil materials with similar contamination history. Chemie der Erde, 69, 109–124.

    Article  Google Scholar 

  • Wu, J. Z., Sun, H. W., Wang, C. P., & Li, Y. H. (2012). Binding of pyrene to different molecular weight fractions of dissolved organic matter: effects of chemical composition and steric conformation. Chemical Research in Chinese Universities, 28, 624–630.

    CAS  Google Scholar 

  • Xing, B., & Chen, Z. (1999). Spectroscopic evidence for condensed domains in soil organic matter. Soil Sciences, 164, 40–47.

    Article  CAS  Google Scholar 

  • Xu, H., Li, X., Sun, Y., Shi, X., & Wu, J. (2016). Biodegradation of pyrene by free and immobilized cell of Herbaspirillum chlorophenolicum strain FA1. Water, Air, Soil and Pollution, 227, 120.

    Article  Google Scholar 

  • Yang, Y., Zhang, N., Xue, M., & Tao, S. (2010). Impact of soil organic matter on the distribution of polycyclic aromatic hydrocarbons (PAHs) in soils. Environnemental Pollution, 158, 2170–2174.

    Article  CAS  Google Scholar 

  • Yang, X. H., Garnier, P., Wang, S. Z., Bergheaud, V., Huang, X., & Qiu, R. L. (2014). PAHs sorption and desorption on soil influenced by pine litter-derived organic matter. Soil Science Society of China, 24, 575–584.

    Google Scholar 

  • Yu, H., Xiao, H., & Wang, D. (2014). Effects of soil properties and biosurfactant on the behavior of PAHs in soil-water systems. Environmental Systems Research, 3, 6.

    Article  Google Scholar 

  • Zand, A. D., Grathwohl, P., Nabibidhendi, G., & Mehrdadi, N. (2010). Determination of leaching behaviour of polycyclic aromatic hydrocarbons from contaminated soil by column leaching test. Waste Management and Research, 28, 913–920.

    Article  CAS  Google Scholar 

  • Zhang, J., & He, M. (2013). Effect of dissolved organic matter on sorption desorption of phenantrene on black carbon. Journal of Environmental Sciences, 12, 2378–2383.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the INNOVASOL consortium for funding and supporting this study. Special thanks are extended to Marian Mombrun and Léa Pigot for their technical and analytical contributions. We are also grateful to Clotilde Thompson for reviewing the linguistic coherence of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adoum Mahamat Ahmat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Fig. 9
figure 9

Temporal evolutions of the studied PAH concentrations under both leaching regimes

Fig. 10
figure 10

PAH mean dissolved concentrations measured under continuous leaching regime (rate of flow F/2 = 0.66 mL min−1). (B) Ratio of concentrations measured on the soil particles and those measured in the liquid phase at saturation (mean values at flow F/2 = 0.66 mL min−1)

Fig. 11
figure 11

Physico-chemical characteristics (water solubility, water diffusion coefficients, and liquid/solid partition constants Kd) of the studied PAHs. Since Kd value evolves following the study context, it is expressed in domains of variability collected in the literature

Fig. 12
figure 12

Light PAHs (M < 200 g mol−1) concentrations versus leaching time (saturated regime, second flow rate)

Fig. 13
figure 13

Heavy PAHs (M > 200 g mol−1) concentrations versus leaching time (saturated regime, second flow rate)

Fig. 14
figure 14

Comparison of leached PAH under saturation with two flow rates. First flow rate F = 1.33 mL min−1, second flow rate F/2 = 0.66 mL min−1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmat, A.M., Cohen, G. & Atteia, O. The Influence of Soil Mechanical Redesigning on Polycyclic Aromatic Hydrocarbon (PAH) Release: a Column Approach. Water Air Soil Pollut 230, 148 (2019). https://doi.org/10.1007/s11270-019-4140-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4140-y

Keywords

Navigation