Skip to main content
Log in

Production of Biochar from Food Waste and its Application for Phenol Removal from Aqueous Solution

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Deriving biochar from biowaste facilitates its reuse and application for environmental protection. This study addresses the adsorption of phenol onto food waste–based biochar (FWC). Phenol adsorption on FWC was affected by pyrolysis temperature, and the highest adsorption capacity was found at a temperature of 700 °C (FWC700). The characteristics of the biochar including morphology, surface area, functional groups, and elemental composition were analyzed. Additional batch experiments were performed to evaluate the phenol adsorption on FWC700 under various experimental conditions such as contact time, initial concentration, reaction temperature, solution pH, adsorbent dose, and presence of competing ions. The adsorption capacity of phenol decreased gradually from 9.79 ± 0.04 to 8.86 ± 0.06 mg/g between solution pH of 3 and 11. Copper sulfate showed the greatest interference on phenol adsorption to FWC in aqueous solution. Phenol removal at different contact times followed pseudo-second-order kinetics, and the Langmuir isotherm model provided the best fit of the equilibrium data with a maximum adsorption capacity of 14.61 ± 1.38 mg/g. Adsorption of phenol increased with increasing temperature from 15 to 35 °C, and thermodynamic analysis indicated an endothermic and spontaneous nature of the adsorption process. Biochar derived from food waste can be used as bio-adsorbent for the removal of phenol from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., et al. (2012). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536–544. https://doi.org/10.1016/j.biortech.2012.05.042.

    Article  CAS  Google Scholar 

  • Arafat, H. A., Franz, M., & Pinto, N. G. (1999). Effect of salt on the mechanism of adsorption of aromatics on activated carbon. Langmuir : the ACS journal of surfaces and colloids, 15(18), 5997–6003.

    Article  CAS  Google Scholar 

  • Bekkouche, S., Baup, S., Bouhelassa, M., Molina-Boisseau, S., & Petrier, C. (2012). Competitive adsorption of phenol and heavy metal ions onto titanium dioxide (Dugussa P25). Desalination and Water Treatment, 37(1–3), 364–372.

    Article  CAS  Google Scholar 

  • Calace, N., Nardi, E., Petronio, B., & Pietroletti, M. (2002). Adsorption of phenols by papermill sludges. Environmental Pollution, 118(3), 315–319.

    Article  CAS  Google Scholar 

  • Cely, P., Tarquis, A. M., Paz-Ferreiro, J., Méndez, A., & Gascó, G. (2014). Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar. Solid Earth, 5(1), 585–594. https://doi.org/10.5194/se-5-585-2014.

    Article  Google Scholar 

  • Chen, B., & Chen, Z. (2009). Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere, 76(1), 127–133. https://doi.org/10.1016/j.chemosphere.2009.02.004.

    Article  CAS  Google Scholar 

  • Chen, B., Zhou, D., & Zhu, L. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science & Technology, 42(14), 5137–5143.

    Article  CAS  Google Scholar 

  • Chen, Z., Chen, B., Zhou, D., & Chen, W. (2012). Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures. Environmental Science & Technology, 46(22), 12476–12483. https://doi.org/10.1021/es303351e.

    Article  CAS  Google Scholar 

  • Cui, Y., Liu, X. Y., Chung, T. S., Weber, M., Staudt, C., & Maletzko, C. (2016). Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: evaluation of FO as an alternative method to reverse osmosis (RO). Water Research, 91, 104–114. https://doi.org/10.1016/j.watres.2016.01.001.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72(2), 243–248. https://doi.org/10.1016/j.jaap.2004.07.003.

    Article  CAS  Google Scholar 

  • Dong, X., Ma, L. Q., Zhu, Y., Li, Y., & Gu, B. (2013). Mechanistic investigation of mercury sorption by Brazilian pepper biochars of different pyrolytic temperatures based on X-ray photoelectron spectroscopy and flow calorimetry. Environmental Science & Technology, 47(21), 12156–12164. https://doi.org/10.1021/es4017816.

    Article  CAS  Google Scholar 

  • Garcia-Segura, S., Ocon, J. D., & Chong, M. N. (2018). Electrochemical oxidation remediation of real wastewater effluents — a review. Process Safety and Environmental Protection, 113, 48–67. https://doi.org/10.1016/j.psep.2017.09.014.

    Article  CAS  Google Scholar 

  • Gupta, S., Kua, H. W., & Koh, H. J. (2018). Application of biochar from food and wood waste as green admixture for cement mortar. The Science of the Total Environment, 619-620, 419–435. https://doi.org/10.1016/j.scitotenv.2017.11.044.

    Article  CAS  Google Scholar 

  • Hamdaoui, O., & Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. Journal of hazardous materials, 147(1–2), 381–394. https://doi.org/10.1016/j.jhazmat.2007.01.021.

    Article  CAS  Google Scholar 

  • Han, Y., Boateng, A. A., Qi, P. X., Lima, I. M., & Chang, J. (2013). Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. Journal of Environmental Management, 118, 196–204. https://doi.org/10.1016/j.jenvman.2013.01.001.

    Article  CAS  Google Scholar 

  • Honfi, K., Tálos, K., Kőnig-Péter, A., Kilár, F., & Pernyeszi, T. (2016). Copper (II) and phenol adsorption by cell surface treated Candida tropicalis cells in aqueous suspension. Water, Air, & Soil Pollution, 227(2), 61.

    Article  Google Scholar 

  • Idrees, M., Batool, S., Kalsoom, T., Yasmeen, S., Kalsoom, A., Raina, S., et al. (2018). Animal manure-derived biochars produced via fast pyrolysis for the removal of divalent copper from aqueous media. Journal of Environmental Management, 213, 109–118. https://doi.org/10.1016/j.jenvman.2018.02.003.

    Article  CAS  Google Scholar 

  • Jain, A. K., Gupta, V. K., Jain, S., & Suhas. (2004). Removal of chlorophenols using industrial wastes. Environmental Science & Technology, 38(4), 1195–1200.

    Article  CAS  Google Scholar 

  • Javed, H., Luong, D. X., Lee, C.-G., Zhang, D., Tour, J. M., & Alvarez, P. J. J. (2018). Efficient removal of bisphenol-A by ultra-high surface area porous activated carbon derived from asphalt. Carbon, 140, 441–448. https://doi.org/10.1016/j.carbon.2018.08.038.

    Article  CAS  Google Scholar 

  • Julcour Lebigue, C., Andriantsiferana, C., N'Guessan, K., Ayral, C., Mohamed, E., Wilhelm, A. M., et al. (2010). Application of sludge-based carbonaceous materials in a hybrid water treatment process based on adsorption and catalytic wet air oxidation. Journal of Environmental Management, 91(12), 2432–2439. https://doi.org/10.1016/j.jenvman.2010.06.008.

    Article  CAS  Google Scholar 

  • Jung, C., Park, J., Lim, K. H., Park, S., Heo, J., Her, N., et al. (2013). Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars. Journal of Hazardous Materials, 263(Pt 2), 702–710. https://doi.org/10.1016/j.jhazmat.2013.10.033.

    Article  CAS  Google Scholar 

  • Kalderis, D., Kayan, B., Akay, S., Kulaksız, E., & Gözmen, B. (2017). Adsorption of 2,4-dichlorophenol on paper sludge/wheat husk biochar: process optimization and comparison with biochars prepared from wood chips, sewage sludge and hog fuel/demolition waste. Journal of Environmental Chemical Engineering, 5(3), 2222–2231. https://doi.org/10.1016/j.jece.2017.04.039.

    Article  CAS  Google Scholar 

  • Karakoyun, N., Kubilay, S., Aktas, N., Turhan, O., Kasimoglu, M., Yilmaz, S., et al. (2011). Hydrogel–Biochar composites for effective organic contaminant removal from aqueous media. Desalination, 280(1–3), 319–325. https://doi.org/10.1016/j.desal.2011.07.014.

    Article  CAS  Google Scholar 

  • Kim, M. H., & Kim, J. W. (2010). Comparison through a LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery. The Science of the Total Environment, 408(19), 3998–4006. https://doi.org/10.1016/j.scitotenv.2010.04.049.

    Article  CAS  Google Scholar 

  • Kim, T. Y., Cho, S. Y., & Kim, S. J. (2010). Adsorption equilibrium and kinetics of copper ions and phenol onto modified adsorbents. Adsorption, 17(1), 135–143. https://doi.org/10.1007/s10450-010-9306-2.

    Article  CAS  Google Scholar 

  • Kim, Y. S., Jang, J. Y., Park, S. J., & Um, B. H. (2018a). Dilute sulfuric acid fractionation of Korean food waste for ethanol and lactic acid production by yeast. Waste Management, 74, 231–240. https://doi.org/10.1016/j.wasman.2018.01.012.

    Article  CAS  Google Scholar 

  • Kim, H. B., Kim, S. H., Jeon, E. K., Kim, D. H., Tsang, D. C. W., Alessi, D. S., et al. (2018b). Effect of dissolved organic carbon from sludge, rice straw and spent coffee ground biochar on the mobility of arsenic in soil. The Science of the Total Environment, 636, 1241–1248. https://doi.org/10.1016/j.scitotenv.2018.04.406.

    Article  CAS  Google Scholar 

  • Lazo-Cannata, J. C., Nieto-Márquez, A., Jacoby, A., Paredes-Doig, A. L., Romero, A., Sun-Kou, M. R., et al. (2011). Adsorption of phenol and nitrophenols by carbon nanospheres: effect of pH and ionic strength. Separation and Purification Technology, 80(2), 217–224. https://doi.org/10.1016/j.seppur.2011.04.029.

    Article  CAS  Google Scholar 

  • Lee, D. H., Behera, S. K., Kim, J. W., & Park, H. S. (2009). Methane production potential of leachate generated from Korean food waste recycling facilities: a lab-scale study. Waste Management, 29(2), 876–882. https://doi.org/10.1016/j.wasman.2008.06.033.

    Article  CAS  Google Scholar 

  • Lee, C.-G., Park, J.-A., Choi, J.-W., Ko, S.-O., & Lee, S.-H. (2016). Removal and recovery of Cr(VI) from industrial plating wastewater using fibrous anion exchanger. Water, Air, & Soil Pollution, 227(8). https://doi.org/10.1007/s11270-016-2992-y.

  • Lee, C. G., Javed, H., Zhang, D., Kim, J. H., Westerhoff, P., Li, Q., et al. (2018). Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants. Environmental Science & Technology, 52(7), 4285–4293. https://doi.org/10.1021/acs.est.7b06508.

    Article  CAS  Google Scholar 

  • Li, H., Mahyoub, S. A. A., Liao, W., Xia, S., Zhao, H., Guo, M., et al. (2017). Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue. Bioresource Technology, 223, 20–26. https://doi.org/10.1016/j.biortech.2016.10.033.

    Article  CAS  Google Scholar 

  • Lin, S. H., & Juang, R. S. (2009). Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. Journal of Environmental Management, 90(3), 1336–1349. https://doi.org/10.1016/j.jenvman.2008.09.003.

    Article  CAS  Google Scholar 

  • Liu, Z., & Zhang, F.-S. (2011). Removal of copper (II) and phenol from aqueous solution using porous carbons derived from hydrothermal chars. Desalination, 267(1), 101–106. https://doi.org/10.1016/j.desal.2010.09.013.

    Article  CAS  Google Scholar 

  • Liu, Q.-S., Zheng, T., Wang, P., Jiang, J.-P., & Li, N. (2010). Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chemical Engineering Journal, 157(2–3), 348–356. https://doi.org/10.1016/j.cej.2009.11.013.

    Article  CAS  Google Scholar 

  • Liu, Y., Chen, J., Chen, M., Zhang, B., Wu, D., & Cheng, Q. (2015). Adsorption characteristics and mechanism of sewage sludge-derived adsorbent for removing sulfonated methyl phenol resin in wastewater. RSC Advances, 5(93), 76160–76169.

    Article  CAS  Google Scholar 

  • Mahvi, A., Maleki, A., & Eslami, A. (2004). Potential of rice husk and rice husk ash for phenol removal in aqueous systems.

  • MOE, Ministry of Environment Korea (2017). Food waste reduction and resource reclamation.

  • Mukherjee, S., Kumar, S., Misra, A. K., & Fan, M. (2007). Removal of phenols from water environment by activated carbon, bagasse ash and wood charcoal. Chemical Engineering Journal, 129(1–3), 133–142. https://doi.org/10.1016/j.cej.2006.10.030.

    Article  CAS  Google Scholar 

  • Ou, Y.-H., Chang, Y.-J., Lin, F.-Y., Chang, M., Yang, C.-Y., & Shih, Y.-H. (2016). Competitive sorption of bisphenol A and phenol in soils and the contribution of black carbon. Ecological Engineering, 92, 270–276. https://doi.org/10.1016/j.ecoleng.2016.04.006.

    Article  Google Scholar 

  • Papaevangelou, V. A., Gikas, G. D., Tsihrintzis, V. A., Antonopoulou, M., & Konstantinou, I. K. (2016). Removal of endocrine disrupting chemicals in HSF and VF pilot-scale constructed wetlands. Chemical Engineering Journal, 294, 146–156. https://doi.org/10.1016/j.cej.2016.02.103.

    Article  CAS  Google Scholar 

  • Peng, P., Lang, Y.-H., & Wang, X.-M. (2016). Adsorption behavior and mechanism of pentachlorophenol on reed biochars: pH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms. Ecological Engineering, 90, 225–233. https://doi.org/10.1016/j.ecoleng.2016.01.039.

    Article  Google Scholar 

  • Polat, H., Molva, M., & Polat, M. (2006). Capacity and mechanism of phenol adsorption on lignite. International Journal of Mineral Processing, 79(4), 264–273.

    Article  CAS  Google Scholar 

  • Rago, Y. P., Surroop, D., & Mohee, R. (2018). Assessing the potential of biofuel (biochar) production from food wastes through thermal treatment. Bioresource Technology, 248(Pt A), 258–264. https://doi.org/10.1016/j.biortech.2017.06.108.

    Article  CAS  Google Scholar 

  • Regmi, P., Garcia Moscoso, J. L., Kumar, S., Cao, X., Mao, J., & Schafran, G. (2012). Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. Journal of Environmental Management, 109, 61–69. https://doi.org/10.1016/j.jenvman.2012.04.047.

    Article  CAS  Google Scholar 

  • Shin, W.-S. (2017). Adsorption characteristics of phenol and heavy metals on biochar from Hizikia fusiformis. Environmental Earth Sciences, 76(22). https://doi.org/10.1007/s12665-017-7125-4.

  • Substances, A. F. T., & Registry, D. (1998). Toxicological profile for phenol (update). GA: Public Health Service, US Department of Health and Human Services Atlanta.

    Google Scholar 

  • Varghese, S., Vinod, V., & Anirudhan, T. (2004). Kinetic and equilibrium characterization of phenols adsorption onto a novel activated carbon in water treatment.

  • Víctor-Ortega, M. D., Ochando-Pulido, J. M., & Martínez-Férez, A. (2016). Phenols removal from industrial effluents through novel polymeric resins: kinetics and equilibrium studies. Separation and Purification Technology, 160, 136–144. https://doi.org/10.1016/j.seppur.2016.01.023.

    Article  CAS  Google Scholar 

  • Vikrant, K., Kim, K. H., Ok, Y. S., Tsang, D. C. W., Tsang, Y. F., Giri, B. S., et al. (2018). Engineered/designer biochar for the removal of phosphate in water and wastewater. The Science of the Total Environment, 616-617, 1242–1260. https://doi.org/10.1016/j.scitotenv.2017.10.193.

    Article  CAS  Google Scholar 

  • Villegas, L. G. C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K. E., & Biswas, N. (2016). A short review of techniques for phenol removal from wastewater. Current Pollution Reports, 2(3), 157–167. https://doi.org/10.1007/s40726-016-0035-3.

    Article  CAS  Google Scholar 

  • Vithanage, M., Mayakaduwa, S. S., Herath, I., Ok, Y. S., & Mohan, D. (2016). Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks. Chemosphere, 150, 781–789. https://doi.org/10.1016/j.chemosphere.2015.11.002.

    Article  CAS  Google Scholar 

  • Xie, J., Meng, W., Wu, D., Zhang, Z., & Kong, H. (2012). Removal of organic pollutants by surfactant modified zeolite: comparison between ionizable phenolic compounds and non-ionizable organic compounds. Journal of Hazardous Materials, 231-232, 57–63. https://doi.org/10.1016/j.jhazmat.2012.06.035.

    Article  CAS  Google Scholar 

  • Yang, X., Igalavithana, A. D., Oh, S. E., Nam, H., Zhang, M., Wang, C. H., et al. (2018). Characterization of bioenergy biochar and its utilization for metal/metalloid immobilization in contaminated soil. The Science of the Total Environment, 640-641, 704–713. https://doi.org/10.1016/j.scitotenv.2018.05.298.

    Article  CAS  Google Scholar 

  • Zagklis, D. P., Vavouraki, A. I., Kornaros, M. E., & Paraskeva, C. A. (2015). Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption. Journal of Hazardous Materials, 285, 69–76. https://doi.org/10.1016/j.jhazmat.2014.11.038.

    Article  CAS  Google Scholar 

  • Zhang, D., Lee, C., Javed, H., Yu, P., Kim, J. H., & Alvarez, P. J. J. (2018). Easily-recoverable, micron-sized TiO2 hierarchical spheres decorated with cyclodextrin for enhanced photocatalytic degradation of organic micropollutants. Environmental Science & Technology. https://doi.org/10.1021/acs.est.8b04301.

  • Zheng, H., Guo, W., Li, S., Chen, Y., Wu, Q., Feng, X., et al. (2017). Adsorption of p-nitrophenols (PNP) on microalgal biochar: analysis of high adsorption capacity and mechanism. Bioresource Technology, 244(Pt 2), 1456–1464. https://doi.org/10.1016/j.biortech.2017.05.025.

    Article  CAS  Google Scholar 

  • Zhou, X., Zhou, J., Liu, Y., Wang, Y., Ren, J., & Ling, B. (2018). Preparation of magnetic biochar derived from cyclosorus interruptus for the removal of phenolic compounds: characterization and mechanism. Separation Science and Technology, 53(9), 1307–1318. https://doi.org/10.1080/01496395.2018.1444056.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the New Faculty Research Fund of Ajou University and the National Research Foundation (NRF) of Korea (NRF-2018R1C1B5044937).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Jik Park.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CG., Hong, SH., Hong, SG. et al. Production of Biochar from Food Waste and its Application for Phenol Removal from Aqueous Solution. Water Air Soil Pollut 230, 70 (2019). https://doi.org/10.1007/s11270-019-4125-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4125-x

Keywords

Navigation