Skip to main content
Log in

Organic Matter Effects on the Cr(VI) Removal Efficiency and Tolerance of Typha domingensis

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The removal efficiency and tolerance of Typha domingensis to Cr(VI) in treatments with and without organic matter (OM) addition were evaluated in microcosm-scale wetlands. Studied Cr(VI) concentrations were 15 mg L−1, 30 mg L−1, and 100 mg L−1, in treatments with and without OM addition, arranged in triplicate. Controls (without neither metal nor OM addition—without metal with OM addition) were disposed. Cr(VI) was removed efficiently from water in all treatments. OM addition enhanced significantly Cr(VI) and total Cr removals from water. In the treatments with OM addition, significantly higher Cr concentrations were found in sediment than the treatments without OM addition. Plants of the treatments without OM addition showed significantly higher Cr concentrations in tissues but lower biomass increase than the treatments with OM addition. The highest Cr concentrations in tissues were observed in submerged parts of leaves, followed by roots. According to SEM analysis, in the 100 mg L−1 treatments, the highest Cr accumulation was observed in the epidermis of old leaves. Although Cr(VI) produced changes in root morphology, the OM addition favored the plant growth. In T. domingensis, root morphological plasticity is an important mechanism to improve metal tolerance and Cr uptake in wetland systems minimizing the environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Basset, R., Issa, A. A., & Adam, M. S. (1995). Chlorophyllase activity: effect of heavy metals and calcium. Photosynthetica, 31, 421–425.

    CAS  Google Scholar 

  • APHA, AWWA, & WEF. (2012). Standard methods for the examination of water and wastewater. Washington D.C.: American Public Health Association.

    Google Scholar 

  • Arduini, I., Masoni, A., & Ercoli, L. (2006). Effects of high chromium applications on Miscanthus during the period of maximum growth. Environmental and Experimental Botany, 58, 234–243.

    Article  CAS  Google Scholar 

  • Bonanno, G., & Vymazal, J. (2017). Compartmentalization of potentially hazardous elements in macrophytes: insights into capacity and efficiency of accumulation. Journal of Geochemical Exploration, 181, 22–30.

    Article  CAS  Google Scholar 

  • Campanella, M. V. H., Hadad, H. R., Maine, M. A., & Markariani, R. (2005). Efectos del fósforo de un efluente cloacal sobre la morfología interna y externa de Eichhornia crassipes (Mart. Solms) en un humedal artificial. Limnetica, 24, 263–272.

    Google Scholar 

  • Carrier, P., Baryla, A., & Havaux, M. (2003). Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Planta, 216, 939–950.

    CAS  Google Scholar 

  • Chandra, R., & Yadav, S. (2010). Potential of Typha angustifolia for phytoremediation of heavy metals from aqueous solution of phenol and melanoidin. Ecological Engineering, 36, 1277–1284.

    Article  Google Scholar 

  • D’Ambrogio de Argüeso, A. (1986). Manual de técnicas en histología vegetal (pp. I–IV). Buenos Aires: Hemisfero Sur S.A.

    Google Scholar 

  • Demirezen, D., & Aksoy, A. (2004). Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere, 56, 685–696.

    Article  CAS  Google Scholar 

  • Di Luca, G. A., Maine, M. A., Mufarrege, M. M., Hadad, H. R., Sánchez, G. C., & Bonetto, C. A. (2011). Metal retention and distribution in the sediment of a constructed wetland for industrial wastewater treatment. Ecological Engineering, 37, 1267–1275.

    Article  Google Scholar 

  • Eid, E. M., & Shaltout, K. H. (2014). Monthly variations of trace elements accumulation and distribution in above- and below-ground biomass of Phragmites australis (Cav.) Trin. ex Steudel in Lake Burullus (Egypt): a biomonitoring application. Ecological Engineering, 73, 17–25.

    Article  Google Scholar 

  • Fendorf, S. (1995). Surface reactions of chromium in soils and waters. Geoderma, 67, 5–71.

    Article  Google Scholar 

  • Gikas, P., & Romanos, P. (2006). Effects of tri-valent (Cr(III)) and hexavalent (Cr(VI)) chromium on the growth of activated sludge. Journal of Hazardous Materials, 133, 212–217.

    Article  CAS  Google Scholar 

  • Gill, L. W., Ring, P., Casey, B., Higgins, N. M. P., & Johnston, P. M. (2017). Long term heavy metal removal by a constructed wetland treating rainfall runoff from a motorway. Science of The Total Environment, 601, 32–44.

    Article  Google Scholar 

  • Guilizzoni, P. (1991). The role of heavy metals and toxic materials in the physiological ecology of submersed macrophytes. Aquatic Botany, 41, 87–109.

    Article  CAS  Google Scholar 

  • Hadad, H. R., Maine, M. A., & Bonetto, C. A. (2006). Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere, 63, 1744–1753.

    Article  CAS  Google Scholar 

  • Hadad, H. R., Maine, M. A., Natale, G. S., & Bonetto, C. (2007). The effect of nutrient addition on metal tolerance in Salvinia herzogii. Ecological Engineering, 31(2), 122–131.

    Article  Google Scholar 

  • Hadad, H. R., Mufarrege, M. M., Pinciroli, M., Di Luca, G. A., & Maine, M. A. (2010). Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland. Archives of Environmental Contamination and Toxicology, 58(3), 666–675.

    Article  CAS  Google Scholar 

  • Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53, 1–11.

    Article  CAS  Google Scholar 

  • Hassan, S. H., Talat, M., & Rai, S. (2007). Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichlornia crassipes). Bioresource Technology, 98, 918–928.

    Article  Google Scholar 

  • Hechmi, N., Aissa, N. B., Abdenaceur, H., & Jedidi, N. (2014). Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-contaminated soils. Environmental Science and Pollution Research, 21(2), 1304–1313.

    Article  CAS  Google Scholar 

  • Heumann, H. G. (1987). Effects of heavy metals on growth and ultrastucture of Chara vulgar. Protoplasma, 136, 37–48.

    Article  CAS  Google Scholar 

  • Hunt, R. (1978). Studies in biology N° 96. London: Edward Arnold Ltd..

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2011). Trace elements in soils and plants. Florida: CRC Press.

    Google Scholar 

  • Kadlec, R. H., & Wallace, S. D. (2009). Treatment wetlands. Boca Raton: CRC Press.

    Google Scholar 

  • Kapitonova, O. A. (2002). Specific anatomical features of vegetative organs in some macrophyte species under conditions of industrial pollution. Russian Journal of Ecology, 33(1), 59–61.

    Article  Google Scholar 

  • Losi, M. E., Amrhein, C., & Frankenberger Jr., W. T. (1994). Environmental biochemistry of chromium. Environmental Biochemistry of Chromium, 136, 91–121.

    CAS  Google Scholar 

  • Maine, M. A., Hadad, H. R., Sánchez, G. C., Mufarrege, M. M., Di Luca, G. A., Caffaratti, S. E., & Pedro, M. C. (2013). Sustainability of a constructed wetland faced with a depredation event. Journal of Environmental Management, 128, 1–6.

    Article  CAS  Google Scholar 

  • Maine, M. A., Hadad, H. R., Sánchez, G., Caffaratti, S., & Pedro, M. C. (2016). Kinetics of Cr(III) and Cr(VI) removal from water by two floating macrophytes. International Journal of Phytoremediation, 18(3), 261–268.

    Article  CAS  Google Scholar 

  • Maine, M. A., Hadad, H. R., Sánchez, G. C., Di Luca, G. A., Mufarrege, M. M., Caffaratti, S. E., & Pedro, M. C. (2017). Long-term performance of two free-water surface wetlands for metallurgical effluent treatment. Ecological Engineering, 98, 372–377.

    Article  Google Scholar 

  • Mangabeira, P. A., Ferreira, A. S., de Almeida, A. A. F., Fernandes, V. F., Lucena, E., Souza, V. L., dos Santos Junior, A. J., Oliveira, A. H., Grenier-Loustalot, M. F., Barbier, F., & Silva, D. C. (2011). Compartmentalization and ultrastructural alterations induced by chromium in aquatic macrophytes. Biometals, 24, 1017–1026.

    Article  CAS  Google Scholar 

  • Manios, T., Stentiford, E., & Millner, P. (2003). The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metalliferous water. Ecological Engineering, 20, 65–74.

    Article  Google Scholar 

  • Mishra, V. K., & Tripathi, B. D. (2009). Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes). Journal of Hazardous Materials, 164, 1059–1063.

    Article  CAS  Google Scholar 

  • Mufarrege, M. M., Hadad, H. R., Di Luca, G. A., & Maine, M. A. (2014). Metal dynamics and tolerance of Typha domingensis exposed to high concentrations of Cr, Ni and Zn. Ecotoxicology and Environmental Safety, 105(1), 90–96.

    Article  CAS  Google Scholar 

  • Mufarrege, M. M., Hadad, H. R., Di Luca, G. A., & Maine, M. A. (2015). The ability of Typha domingensis to accumulate and tolerate high concentrations of Cr, Ni, and Zn. Environmental Science and Pollution Research, 22, 286–292.

    Article  CAS  Google Scholar 

  • Mufarrege, M.M., Di Luca, G.A. Sanchez, G.C. Hadad, H.R., Pedro, M.C., & Maine, M.A. (2016). Effects of the presence of nutrients in the removal of high concentrations of Cr(III) by Typha domingensis. Environment and Earth Science, 75. doi:https://doi.org/10.1007/s12665-016-5693-3.

  • Murphy, J., & Riley, J. (1962). A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • Nilratnisakorn, S., Thiravetyan, P., & Nakbanpote, W. (2007). Synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn.): effects of dye, salinity and metals. Science of The Total Environment, 384, 67–76.

    Article  CAS  Google Scholar 

  • Prasad, M. N. V., & Freitas, H. M. O. (2003). Metal hyperaccumulation in plants- biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6, 285–321.

    Article  Google Scholar 

  • Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31, 739–753.

    Article  CAS  Google Scholar 

  • Sinha, S., & Gupta, A. K. (2005). Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants. Chemosphere, 61, 1204–1214.

    Article  CAS  Google Scholar 

  • Stoltz, E., & Greger, M. (2002). Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, 47, 271–280.

    Article  CAS  Google Scholar 

  • Sultana, M. Y., Akratos, C. S., Pavlou, S., & Vayenas, D. V. (2014). Chromium removal in constructed wetlands: a review. International Biodeterioration & Biodegradatio, 96, 181–190.

    Article  Google Scholar 

  • Suñe, N., Sánchez, G., Caffaratti, S., & Maine, M. A. (2007). Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Environmental Pollution, 145(2), 467–473.

    Article  Google Scholar 

  • Taylor, G. J., & Crowder, A. A. (1983). Uptake and accumulation of copper, nickel, and iron by Typha latifolia grown in solution culture. Canadian Journal of Botany, 61, 1825–1830.

    Article  CAS  Google Scholar 

  • Teles Gomes, M. V., de Souza, R. R., Teles, V. S., & Araújo Mendes, E. (2014). Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chemosphere, 103, 228–233.

    Article  Google Scholar 

  • USEPA. (1994). Method 200.2: Sample preparation procedure for spectrochemical determination of total recoverable elements. Rev. 2.8. Washington D.C.: United States Environmental Protection Agency.

    Google Scholar 

  • Vymazal, J. (2011). Constructed wetlands for wastewater treatment: five decades of experience. Environmental Science & Technology, 45, 61–69.

    Article  CAS  Google Scholar 

  • Wahl, S., Ryser, P., & Edwards, P. J. (2001). Phenotypic plasticity of grass root anatomy in response to light intensity and nutrient supply. Annals of Botany, 88, 1071–1078.

    Article  Google Scholar 

  • Westlake, D. F. (1974). Macrophytes. In R. A. Vollenweider (Ed.), A manual on methods for measuring primary production in aquatic environments IBP Handbook N° 12 (pp. 32–42). Oxford: International Biological Programme, Blackwell Scientific Publications.

    Google Scholar 

  • Zhou, K. Y., Chen, S. S., & Li, M. Q. (1993). Effect of different levels of phosphorus nutrition on the photosynthesis and respiration tobacco leaf. Acta Phytophysiol Sinica, 19(1), 3–8.

    CAS  Google Scholar 

Download references

Funding

This study was funded by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral (UNL), and Agencia de Promoción Científica y Tecnológica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Hadad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mufarrege, M.M., Hadad, H.R., Di Luca, G.A. et al. Organic Matter Effects on the Cr(VI) Removal Efficiency and Tolerance of Typha domingensis. Water Air Soil Pollut 229, 384 (2018). https://doi.org/10.1007/s11270-018-4035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-4035-3

Keywords

Navigation