Skip to main content
Log in

Reduced Graphene Oxide/Attapulgite-Supported Nanoscale Zero-Valent Iron Removal of Acid Red 18 from Aqueous Solution

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this paper, reduced graphenoxide/attapulgite (rGO/APT)-supported nanoscale zero-valent iron (nZVI) composites (rGO/APT-nZVI) were synthesized to remove acid red 18 (AR18) and other organic dyes from aqueous solutions. The structure of synthetic rGO/APT-nZVI composite was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD), and the removal properties of rGO/APT-nZVI on AR18 were investigated. The factors of various experimental parameters (ratio, pH, initial concentration, temperature, and time) impacting on removal of AR18 were studied as well. Comparison experiment of different materials showed that 93.5% of AR18 was removed using rGO/APT-nZVI, while only 7.9% and 64.8% of AR18 were removed using rGO/APT-nZVI after reacting for 30 min with an initial AR18 concentration of 100 mg L−1, respectively. Moreover, kinetic and thermodynamic analyses were used to study the reduction process, and possible mechanism of AR18 removal was discussed. The results show that the rGO/APT-nZVI composites can effectively degrade AR18 over a wide range of pH and keep degradation activity in a long storage. In addition, the superior behaviors for other organic dyes removal highlight the great potential as an efficient adsorbent for water pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Chandrasekaran, S., Hur, S. H., Kim, E. J., Rajagopalan, B., Babu, K. F., Senthilkumar, V., Chung, J. S., Choi, W. M., & Kim, Y. S. (2015). Highly-ordered maghemite/reduced graphene oxide nanocomposites for high-performance photoelectrochemical water splitting. RSC Advances, 5(37), 29159–29166.

    Article  CAS  Google Scholar 

  • Chen, Z., Jin, X., Chen, Z., Megharaj, M., & Naidu, R. (2011a). Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. Journal of Colloid & Interface Science, 363(2), 601–607.

    Article  CAS  Google Scholar 

  • Chen, H., Zhao, J., Wu, J., & Dai, G. (2011b). Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae. Journal of Hazardous Materials, 192(1), 246–254.

    CAS  Google Scholar 

  • Chen, Z., Wang, T., Jin, X., Chen, Z., Megharaj, M., & Naidu, R. (2013). Multifunctional kaolinite-supported nanoscale zero-valent iron used for the adsorption and degradation of crystal violet in aqueous solution. Journal of Colloid & Interface Science, 398(19), 59–66.

    Article  CAS  Google Scholar 

  • Cheng, R., Ou, S., Xiang, B., Li, Y., & Liao, Q. (2010). Equilibrium and molecular mechanism of anionic dyes adsorption onto copper(II) complex of dithiocarbamate-modified starch. Langmuir, 26(2), 752–758.

    Article  CAS  Google Scholar 

  • Choe, S., Chang, Y. Y., Hwang, K. Y., & Khim, J. (2000). Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere, 41(8), 1307–1311.

    Article  CAS  Google Scholar 

  • Fan, H., Wang, H., Zhao, N., Zhang, X., & Xu, J. (2011). Hierarchical nanocomposite of polyaniline nanorods grown on the surface of carbon nanotubes for high-performance supercapacitor electrode. Journal of Materials Chemistry, 22(6), 2774–2780.

    Article  Google Scholar 

  • Fan, S., Tang, J., Wang, Y., Li, H., Zhang, H., Tang, J., Wang, Z., & Li, X. (2016). Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: Kinetics, isotherm, thermodynamic and mechanism. Journal of Molecular Liquids, 220, 432–441.

    Article  CAS  Google Scholar 

  • Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Journal of Hazardous Materials, 267(3), 194–205.

    Article  CAS  Google Scholar 

  • Fu, R., Yang, Y., Xu, Z., Zhang, X., Guo, X., & Bi, D. (2015). The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere, 138, 726–734.

    Article  CAS  Google Scholar 

  • Gao, Q., Zhu, H., Luo, W., Wang, S., & Zhou, C. (2014). Preparation, characterization, and adsorption evaluation of chitosan-functionalized mesoporous composites. Microporous and Mesoporous Materials, 193(3), 15–26.

    Article  CAS  Google Scholar 

  • Garg, V. K., Gupta, R., Yadav, A. B., & Kumar, R. (2003). Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology, 89(2), 121–124.

    Article  CAS  Google Scholar 

  • Gupta, K., & Khatri, O. P. (2017). Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: Plausible adsorption pathways. Journal of Colloid & Interface Science, 501, 11–21.

    Article  CAS  Google Scholar 

  • Hao, J., Ji, L., Li, C., Hu, C., & Wu, K. (2018). Rapid, efficient and economic removal of organic dyes and heavy metals from wastewater by zinc-induced in-situ reduction and precipitation of graphene oxide. Journal of the Taiwan Institute of Chemical Engineers, 88, 137–145.

    Article  CAS  Google Scholar 

  • Heibati, B., Rodriguez-Couto, S., Al-Ghouti, M. A., Asif, M., Tyagi, I., Agarwal, S., & Gupta, V. K. (2015). Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods. Journal of Molecular Liquids, 208, 99–105.

    Article  CAS  Google Scholar 

  • Jabeen, H., Chandra, V., Jung, S., Lee, J. W., Kim, K. S., & Kim, S. B. (2011). Enhanced Cr(vi) removal using iron nanoparticle decorated graphene. Nanoscale, 3(9), 3583–3585.

    Article  CAS  Google Scholar 

  • Jin, X., Chen, Z., Zhou, R., & Chen, Z. (2015). Synthesis of kaolin supported nanoscale zero-valent iron and its degradation mechanism of direct fast black G in aqueous solution. Materials Research Bulletin, 61, 433–438.

    Article  CAS  Google Scholar 

  • Li, Y., Du, Q., Liu, T., Peng, X., Wang, J., Sun, J., Wang, Y., Wu, S., Wang, Z., Xia, Y., & Xia, L. (2013). Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chemical Engineering Research & Design, 91(2), 361–368.

    Article  CAS  Google Scholar 

  • Li, Z., Wang, L., Yuan, L., Xiao, C., Mei, L., & Zheng, L. (2015). Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite. Journal of Hazardous Materials, 290, 26–33.

    Article  CAS  Google Scholar 

  • Li, J., Chen, C., Zhu, K., & Wang, X. (2016). Nanoscale zero-valent iron particles modified on reduced graphene oxides using a plasma technique for Cd(II) removal. Journal of the Taiwan Institute of Chemical Engineers, 59, 389–394.

    Article  CAS  Google Scholar 

  • Mahmoodi, N. M., Maroofi, S. M., Mazarji, M., & Nabi-Bidhendi, G. (2017). Preparation of modified reduced graphene oxide nanosheet with cationic surfactant and its dye adsorption ability from colored wastewater. Journal of Surfactants & Detergents, 20(5), 1085–1093.

    Article  CAS  Google Scholar 

  • Mercante, L. A., Facure, M. H. M., Locilento, D. A., Sanfelice, R. C., Migliorini, F. L., Mattoso, L. H. C., & Correa, D. S. (2017). Solution blow spun PMMA nanofibers wrapped with reduced graphene oxide as an efficient dye adsorbent. New Journal of Chemistry, 41(17), 9087–9094.

    Article  CAS  Google Scholar 

  • Mu, B., & Wang, A. Q. (2015). One-pot fabrication of multifunctional superparamagnetic attapulgite/Fe3O4/polyaniline nanocomposites served as an adsorbent and catalyst support. Journal of Materials Chemistry A, 3(1), 281–289.

    Article  CAS  Google Scholar 

  • Mu, B., & Wang, A. Q. (2016). Adsorption of dyes onto palygorskite and its composites: a review. Journal of Environmental Chemical Engineering, 4(1), 1274–1294.

    Article  CAS  Google Scholar 

  • Park, H., & Choi, W. (2003). Visible light and Fe(III)-mediated degradation of acid Orange 7 in the absence of H2O2. Journal of Photochemistry & Photobiology A Chemistry, 159(3), 241–247.

    Article  CAS  Google Scholar 

  • Quan, G., Sun, W., Yan, J., & Lan, Y. (2014). Nanoscale zero-zalent iron supported on biochar: characterization and reactivity for degradation of acid orange 7 from aqueous solution. Water, Air, & Soil Pollution, 225, 2195.

    Article  Google Scholar 

  • Reck, I. M., Paixao, R. M., Bergamasco, R., Vieira, M. F., & Vieira, A. M. S. (2018). Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds. Journal of Cleaner Production, 171, 85–97.

    Article  CAS  Google Scholar 

  • Rhouta, B., Zatile, E., Bouna, L., Lakbita, O., Maury, F., Daoudi, L., Lafont, M. C., Amjoud, M. B., Senocq, F., & Jada, A. (2013). Comprehensive physicochemical study of dioctahedral palygorskite-rich clay from Marrakech High Atlas (Morocco). Physics & Chemistry of Minerals, 40(5), 411–424.

    Article  CAS  Google Scholar 

  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247–255.

    Article  CAS  Google Scholar 

  • Shaibu, S., Adekola, F., Adegoke, H., & Ayanda, O. (2014). A comparative study of the adsorption of methylene blue onto synthesized nanoscale zero-valent iron-bamboo and manganese-bamboo composites. Materials, 7(6), 4493–4507.

    Article  Google Scholar 

  • Shi, L., Zhang, X., & Chen, Z. (2011). Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research, 45(2), 886–892.

    Article  CAS  Google Scholar 

  • Shirmardi, M., Mesdaghinia, A., Mahvi, A. H., Nasseri, S., & Nabizadeh, R. (2012). Kinetics and equilibrium studies on adsorption of acid red 18 (azo-dye) using multiwall carbon nanotubes (MWCNTs) from aqueous solution. E-Journal of Chemistry, 9(4), 2371–2383.

    Article  CAS  Google Scholar 

  • Sun, Z., Zheng, S., Ayoko, G. A., Frost, R. L., & Xi, Y. (2013). Degradation of simazine from aqueous solutions by diatomite-supported nanoscale zero-valent iron composite. Journal of Hazardous Materials, 263, 768–777.

    Article  CAS  Google Scholar 

  • Uzum, C., Shahwan, T., Eroglu, A. E., Hallam, K. R., Scott, T. B., & Lieberwirth, I. (2009). Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Applied Clay Science, 43(2), 172–181.

    Article  CAS  Google Scholar 

  • Wang, W., & Wang, A. (2016). Recent progress in dispersion of palygorskite crystal bundles for nanocomposites. Applied Clay Science, 119, 18–30.

    Article  CAS  Google Scholar 

  • Wang, C., Luo, H., Zhang, Z., Wu, Y., Zhang, J., & Chen, S. (2014). Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. Journal of Hazardous Materials, 268(3), 124–131.

    Article  CAS  Google Scholar 

  • Wang, L., Chen, Z., Wen, H., Cai, Z., He, C., Wang, Z., & Yan, W. (2018). Microwave assisted modification of activated carbons by organic acid ammoniums activation for enhanced adsorption of acid red 18. Powder Technology, 323, 230–237.

    Article  CAS  Google Scholar 

  • Wu, X., Zhu, W., Zhang, X., Chen, T., & Frost, R. L. (2011). Catalytic deposition of nanocarbon onto palygorskite and its adsorption of phenol. Applied Clay Science, 52(4), 400–406.

    Article  CAS  Google Scholar 

  • Yang, B., Tian, Z., Zhang, L., Guo, Y., & Yan, S. (2015). Enhanced heterogeneous Fenton degradation of methylene blue by nanoscale zero valent iron (nZVI) assembled on magnetic Fe3O4/reduced graphene oxide. Journal of Water Process Engineering, 5, 101–111.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (51763015, 51503092), the Foundation of Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CMAR-04), and the Foundation for Innovation Groups of Basic Research in Gansu Province (No. 1606RJIA322).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Xu or Yong Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Tian, W., Zhang, Y. et al. Reduced Graphene Oxide/Attapulgite-Supported Nanoscale Zero-Valent Iron Removal of Acid Red 18 from Aqueous Solution. Water Air Soil Pollut 229, 388 (2018). https://doi.org/10.1007/s11270-018-4033-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-4033-5

Keywords

Navigation