Skip to main content
Log in

Preparation of Modified Reduced Graphene Oxide nanosheet with Cationic Surfactant and its Dye Adsorption Ability from Colored Wastewater

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

In this paper, reduced graphene oxide (rGO) nanosheet from graphite was synthesized using the top-down approach. The surface of rGO was modified by cetyltrimethylammonium bromide (CTAB) to prepare rGO/CTAB adsorbent for anionic dye removal. The prepared rGO/CTAB was characterized by XRD, FTIR, FE-SEM and TGA. The operation parameters (surfactant concentration, adsorbent dosage, pH and initial concentration of dye solution) affecting the batch adsorption process to remove direct red 80 (DR80) and direct red 23 (DR23) were studied in detail. The dye adsorption capacity of rGO/CTAB was 213 and 79 mg/g for DR80 and DR23, respectively. In addition, dye removal followed the Langmuir isotherm with pseudo-second order reaction kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Konstantinou IK, Albanis TA. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ. 2004;49:1–14.

    Article  CAS  Google Scholar 

  2. Mahmoodi NM. Photocatalytic degradation of dyes using carbon nanotube and titania nanoparticle. Water Air Soil Pollut. 2013;224:1612.

    Article  Google Scholar 

  3. Mahmoodi NM. Synthesis of magnetic carbon nanotube and photocatalytic dye degradation ability. Environ Monit Assess. 2014;186:5595–604.

    Article  CAS  Google Scholar 

  4. Dubey R, Bajpai J, Bajpai AK. Green synthesis of graphene sand composite (GSC) as novel adsorbent for efficient removal of Cr(VI) ions from aqueous solution. J Water Process Eng. 2015;5:83–94.

    Article  Google Scholar 

  5. Mahmoodi NM. Manganese ferrite nanoparticle: synthesis, characterization and photocatalytic dye degradation ability. Desalination Water Treat. 2015;53:84–90.

    Article  CAS  Google Scholar 

  6. Mahmoodi NM, Najafi F. Synthesis, amine functionalization and dye removal ability of titania/silica nano-hybrid. Microporous Mesoporous Mater. 2012;156:153–60.

    Article  CAS  Google Scholar 

  7. Mahmoodi NM, Arabloo M, Abdi J. Laccase immobilized manganese ferrite nanoparticle: synthesis and LSSVM intelligent modeling of decolorization. Water Res. 2014;67:216–26.

    Article  CAS  Google Scholar 

  8. Liu CH, Wu JS, Chiu HC, Suen S-Y, Chu KH. Removal of anionic reactive dyes from water using anion exchange membranes as adsorbers. Water Res. 2007;41:1491–500.

    Article  CAS  Google Scholar 

  9. Mahmoodi NM. Photodegradation of dyes using multiwalled carbon nanotube and ferrous ion. J Environ Eng. 2013;139:1368–74.

    Article  CAS  Google Scholar 

  10. Mahmoodi NM. Binary catalyst system dye degradation using photocatalysis. Fibers Polym. 2014;15:273–80.

    Article  CAS  Google Scholar 

  11. Lau WJ, Ismail AF. Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling control—a review. Desalination. 2009;245:321–48.

    Article  CAS  Google Scholar 

  12. Mahmoodi NM. Synthesis of amine functionalized magnetic ferrite nanoparticle and its dye removal ability. J Environ Eng. 2013;139:1382–90.

    Article  CAS  Google Scholar 

  13. Mahmoodi NM, Hayati B, Arami M, Mazaheri F. Single and binary system dye removal from colored textile wastewater by a dendrimer as a polymeric nanoarchitecture: equilibrium and kinetics. J Chem Eng Data. 2010;55:4660–8.

    Article  CAS  Google Scholar 

  14. Mahmoodi NM. Surface modification of magnetic nanoparticle and dye removal from ternary systems. J Ind Eng Chem. 2015;27:251–9.

    Article  CAS  Google Scholar 

  15. Mahmoodi NM. Dendrimer functionalized nanoarchitecture: synthesis and binary system dye removal. J Taiwan Inst Chem Eng. 2014;45:2008–20.

    Article  CAS  Google Scholar 

  16. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306:666–9.

    Article  CAS  Google Scholar 

  17. Chowdhury S, Balasubramanian R. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Colloid Interface Sci. 2014;204:35–56.

    Article  CAS  Google Scholar 

  18. Wang H, Yuan X, Wu Y, Huang H, Peng X, Zeng G, Zhong H, Liang J, Ren M. Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation. Adv Colloid Interface Sci. 2013;195:19–40.

    Article  Google Scholar 

  19. Hu L, Li Y, Zhang X, Wang Y, Cui L, Wei Q, Ma H, Yan L, Du B. Fabrication of magnetic water-soluble hyperbranched polyol functionalized graphene oxide for high-efficiency water remediation. Sci Rep. 2016. doi:10.1038/srep28924.

    Google Scholar 

  20. Wu Y, Luo H, Wang H, Wang C, Zhang J, Zhang Z. Adsorption of hexavalent chromium from aqueous solutions by graphene modified with cetyltrimethylammonium bromide. J Colloid Interface Sci. 2013;394:183–91.

    Article  CAS  Google Scholar 

  21. Julkapli NM, Bagheri S. Graphene supported heterogeneous catalysts: an overview. Int J Hydrogen Energy. 2015;40:948–79.

    Article  CAS  Google Scholar 

  22. Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL, Faria JL, Silva AMT. Design of graphene-based TiO2 photocatalysts—a review. Environ Sci Pollut Res. 2012;19:3676–87.

    Article  CAS  Google Scholar 

  23. Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat Nanotechnol. 2009;4:217–24.

    Article  CAS  Google Scholar 

  24. Kemp KC, Seema H, Saleh M, Le NH, Mahesh K, Chandra V, Kim KS. Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale. 2013;5:3149–71.

    Article  CAS  Google Scholar 

  25. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev. 2012;112:6156–214.

    Article  CAS  Google Scholar 

  26. Jin Y, Liu F, Tong M, Hou Y. Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles. J Hazard Mater. 2012;227:461–8.

    Article  Google Scholar 

  27. Mahmoodi NM, Banijamali M, Noroozi B. Surface modification and ternary system dye removal ability of manganese ferrite nanoparticle. Fibers Polym. 2014;15:1616–26.

    Article  CAS  Google Scholar 

  28. Mahmoodi NM, Abdi J, Bastani D. Direct dyes removal using modified magnetic ferrite nanoparticle. J Environ Health Sci Eng. 2014;12:96.

    Article  Google Scholar 

  29. Mahmoodi NM, Hayati B, Arami M. Kinetic, equilibrium and thermodynamic studies of ternary system dye removal using a biopolymer. Ind Crops Prod. 2012;35:295–301.

    Article  CAS  Google Scholar 

  30. Mahmoodi NM, Soltani-Gordefaramarzi S, Sadeghi-Kiakhani M. Dye removal using modified copper ferrite nanoparticle and RSM analysis. Environ Monit Assess. 2013;185:10235–48.

    Article  CAS  Google Scholar 

  31. Zhu R, Zhu L, Zhu J, Ge F, Wang T. Sorption of naphthalene and phosphate to the CTMAB–Al 13 intercalated bentonites. J Hazard Mater. 2009;168:1590–4.

    Article  CAS  Google Scholar 

  32. Hosseinabadi-Farahani Z, Mahmoodi NM, Hosseini-Monfared H. Preparation of surface functionalized Graphene Oxide nanosheet and its multicomponent dye removal ability from wastewater. Fibers Polym. 2015;16:1035–47.

    Article  CAS  Google Scholar 

  33. Bosch-Navarro C, Coronado E, Martí-Gastaldo C, Sánchez-Royo JF, Gómez MG. Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions. Nanoscale. 2012;4:3977–82.

    Article  CAS  Google Scholar 

  34. Hosseinabadi-Farahani Z, Hosseini-Monfared H, Mahmoodi NM. Graphene oxide nanosheet: preparation and dye removal from binary system colored wastewater. Desalination Water Treat. 2015;56:2382–94.

    Article  CAS  Google Scholar 

  35. Su X, Wang G, Li W, Bai J, Wang H. A simple method for preparing graphene nano-sheets at low temperature. Adv Powder Technol. 2013;24:317–23.

    Article  CAS  Google Scholar 

  36. Loryuenyong V, Totepvimarn K, Eimburanapravat P, Boonchompoo W, Buasri A. Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Adv Mater Sci Eng. 2013. doi:10.1155/2013/923403.

    Google Scholar 

  37. Liu Y, Hu Y, Zhou M, Qian H, Hu X. Microwave-assisted non-aqueous route to deposit well-dispersed ZnO nanocrystals on reduced graphene oxide sheets with improved photoactivity for the decolorization of dyes under visible light. Appl Catal B Environ. 2012;125:425–31.

    Article  CAS  Google Scholar 

  38. Thomas RT, Rasheed PA, Sandhyarani N. Synthesis of nanotitania decorated few-layer graphene for enhanced visible light driven photocatalysis. J Colloid Interface Sci. 2014;428:214–21.

    Article  CAS  Google Scholar 

  39. Sun L, Wang G, Hao R, Han D, Cao S. Solvothermal fabrication and enhanced visible light photocatalytic activity of Cu2O-reduced graphene oxide composite microspheres for photodegradation of rhodamine B. Appl Surf Sci. 2015;358:91–9.

    Article  CAS  Google Scholar 

  40. Chen D, Wang D, Ge Q, Ping G, Fan M, Qin L, Bai L, Lv C, Shu K. Graphene-wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis. Thin Solid Films. 2015;574:1–9.

    Article  CAS  Google Scholar 

  41. Mahmoodi NM. Synthesis of core-shell magnetic adsorbent nanoparticle and selectivity analysis for binary system dye removal. J Ind Eng Chem. 2014;20:2050–8.

    Article  CAS  Google Scholar 

  42. Mahmoodi NM. Nickel ferrite nanoparticle: synthesis, modification by surfactant and dye removal ability. Water Air Soil Pollut. 2013;224:1419.

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out at the Department of Environmental Research, Institute for Color Science and Technology (ICST). Professor Mahmoodi acknowledges the support by the ICST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niyaz Mohammad Mahmoodi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoodi, N.M., Maroofi, S.M., Mazarji, M. et al. Preparation of Modified Reduced Graphene Oxide nanosheet with Cationic Surfactant and its Dye Adsorption Ability from Colored Wastewater. J Surfact Deterg 20, 1085–1093 (2017). https://doi.org/10.1007/s11743-017-1985-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-017-1985-1

Keywords

Navigation