Skip to main content
Log in

Investigating Anthropogenic and Geogenic Sources of Groundwater Contamination in a Semi-Arid Alluvial Basin, Goshen Valley, UT, USA

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Groundwater resources can be impacted by contamination from geogenic and anthropogenic inputs but it can be difficult to disentangle contaminant sources. In this study, we investigated the sources and distribution of NO3 and As in Goshen Valley, UT, a semi-arid alluvial basin in the western USA that contains geothermal waters, playa soils, agriculture, and legacy mining. Surface water, springs, and wells were analyzed for As and NO3 concentrations in relation to major ions, trace elements, and stable isotopes in water (δ18O and δD), and other isotopic tracers. Major ion concentrations showed high spatial variability ranging from freshwater to brackish water, with the highest salinity found in geothermal springs and springs discharging from playa sediments (Playa Springs). Radiogenic 87Sr/86Sr ratios in the Playa Springs suggest that Sr is sourced from crystalline basement rocks. The highest NO3 concentrations were found in groundwater beneath agricultural areas, particularly dairy farms, with isotopic values indicating manure, not fertilizers, as the major source. Many of the NO3-contaminated wells contained old groundwater (based on 14C and 3H), suggesting that reinfiltration of pumped groundwater may be a source of NO3 pollution. The Playa Springs also had the highest As concentrations, with moderate As concentrations found in other geothermal springs. Wells containing moderate As concentrations were found in areas where the groundwater interacts with alluvial sediments or carbonate rocks. Surprisingly, nearby mining and mineral processing seems to have minimal effect on As contamination in the alluvial aquifer. This study has implications for understanding water quality in regions that are impacted by multiple potential contaminant sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aggarwal, P. K., Froehlich, K., & Kulkarni, K. M. (2000). Environmental isotopes in groundwater studies. Groundwater, 2, 11.

    Google Scholar 

  • Ayotte, J. D., Medalie, L., Qi, S. L., Backer, L. C., & Nolan, B. T. (2017). Estimating the high-arsenic domestic-well population in the conterminous United States. Environmental Science & Technology, 51, 12443–12454.

    Article  CAS  Google Scholar 

  • Bagla, P., & Kaiser, J. (1996). India's spreading health crisis draws global arsenic experts. Science, 274, 174–175.

    Article  CAS  Google Scholar 

  • Böhlke, J.-K. (2002). Groundwater recharge and agricultural contamination. Hydrogeology Journal, 10, 153–179.

    Article  CAS  Google Scholar 

  • Brooks, L. E. (2013). Evaluation of the groundwater flow model for southern Utah and Goshen valleys, Utah, updated to conditions through 2011, with new projections and groundwater management simulations. U.S. Geological Survey Open-File Report, 2013-1171, 35.

    Google Scholar 

  • Clark, I., & Fritz, P. (1997). Environmental isotopes in hydrogeology (p. 328). CRC Press: New York.

    Google Scholar 

  • Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H., & Zak, I. (1980). The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28, 199–260.

    Article  CAS  Google Scholar 

  • Constenius, K. N., Clark, D. L., King, J. K. & Ehler, J. B.: 2011, 'Interim geologic map of the Provo 30' X 60' quadrangle, Utah, Wasatch, and Salt Lake Counties, Utah', Utah Geologic Survey Open-File Report 586DM.

  • de Andrade, R. P., de Mello, J. W. V., Windmöller, C. C., da Silva, J. B. B., & Figueiredo, B. R. (2012). Evaluation of arsenic availability in Sulfidic materials from gold mining areas in Brazil. Water, Air, & Soil Pollution, 223, 4679–4686.

    Article  CAS  Google Scholar 

  • Degnan, J. R., Böhlke, J. K., Pelham, K., Langlais, D. M., & Walsh, G. J. (2016). Identification of groundwater nitrate contamination from explosives used in road construction: Isotopic, chemical, and hydrologic evidence. Environmental Science & Technology, 50, 593–603.

    Article  CAS  Google Scholar 

  • deLemos, J. L., Bostick, B. C., Renshaw, C. E., StÜrup, S., & Feng, X. (2006). Landfill-stimulated Iron reduction and arsenic release at the Coakley superfund site (NH). Environmental Science & Technology, 40, 67–73.

    Article  CAS  Google Scholar 

  • Dustin, J. D., & Merritt, L. B. (1980). Hydrogeology of Utah Lake with emphasis on Goshen Bay. Utah Geological Survey Water Resources Bulletin, 23, 50.

    Google Scholar 

  • Garelick, H., Jones, H., Dybowska, A., & Valsami-Jones, E. (2008). 'Arsenic pollution sources', Reviews of Environmental Contamination Volume 197: International Perspectives on Arsenic Pollution and Remediation (pp. 17–60). New York, NY: Springer New York.

    Google Scholar 

  • Goodsell, T. H., Carling, G. T., Aanderud, Z. T., Nelson, S. T., Fernandez, D. P., & Tingey, D. G. (2017). Thermal groundwater contributions of arsenic and other trace elements to the middle Provo River, Utah, USA. Environmental Earth Sciences, 76, 268.

    Article  CAS  Google Scholar 

  • Gu, B., Ge, Y., Chang, S. X., Luo, W., & Chang, J. (2013). Nitrate in groundwater of China: Sources and driving forces. Global Environmental Change, 23, 1112–1121.

    Article  Google Scholar 

  • Hart, W. S., Quade, J., Madsen, D. B., Kaufman, D. S., & Oviatt, C. G. (2004). The 87Sr/86Sr ratios of lacustrine carbonates and lake-level history of the Bonneville paleolake system. Geological Society of America Bulletin, 116, 1107–1119.

    Article  CAS  Google Scholar 

  • Heaton, T. H. E., Stuart, M. E., Sapiano, M., & Micallef Sultana, M. (2012). An isotope study of the sources of nitrate in Malta’s groundwater. Journal of Hydrology, 414–415, 244–254.

    Article  CAS  Google Scholar 

  • Hecker, S. (1993). Quarternary tectonics of Utah with emphasis on earthquake-hazard characterization. Utah Geologic Survey Bulletin, 127.

  • Henke, S. (2009). Arsenic in natural environments: Arsenic: Environmental chemistry, health threats and waste treatment. John Wiley & Sons, ltd.

  • Hintze, L. & Kowallis, B. (2009). Geological history of Utah. Brigham Young University geology studies.

  • Hoffman, C. M. & Stewart, G. L. (1966). Quantitative determination of tritium in natural waters, U.S. Geological Survey Water-Supply Paper 1696-D.

  • Jones, B. F., White, W. W., Conko, K. M., Webster, D. M. & Kohler, J. F.: (2009). Mineralogy and fluid chemistry of surficial sediments in Newfoundland Basin, Tooele and Box Elder Counties, Utah. Utah Geologic Survey Open-File Report, 539.

  • Kavdır, Y., Rasse, D. P., & Smucker, A. J. M. (2005). Specific contributions of decaying alfalfa roots to nitrate leaching in a Kalamazoo loam soil. Agriculture, Ecosystems & Environment, 109, 97–106.

    Article  CAS  Google Scholar 

  • Kendall, C., Doctor, D. H., & Young, M. B. (2014). 7.9 - Environmental isotope applications in hydrologic studies A2 - Holland, Heinrich D. In K. K. Turekian (Ed.), Treatise on geochemistry (2nd ed., pp. 273–327). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Krouse, H. R., & Mayer, B. (2000). Sulphur and oxygen isotopes in sulphate. In P. G. Cook & A. L. Herczeg (Eds.), Environmental tracers in subsurface hydrology (pp. 195–231). Boston, MA: Springer US.

    Chapter  Google Scholar 

  • Lurry, D. & Kolbe, C. M. (2000). Interagency field manual for the collection of water-quality data. U.S. Geological Survey Open-File Report 00-213.

  • McArthur, J. M., Howarth, R. J., & Bailey, T. R. (2001). Strontium isotope stratigraphy: LOWESS version 3: Best fit to the marine Sr-isotope curve for 0–509 ma and accompanying look-up table for deriving numerical age. The Journal of Geology, 109, 155–170.

    Article  CAS  Google Scholar 

  • McCleskey, R. B., Nordstrom, D. K., Susong, D. D., Ball, J. W., & Taylor, H. E. (2010). Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA. II. Trace element chemistry. Journal of Volcanology and Geothermal Research, 196, 139–155.

    Article  CAS  Google Scholar 

  • McCune, B., & Grace, J. B. (2002). Analysis of ecological communities. Geneden Beach, Oregon: MJM Software Design.

    Google Scholar 

  • McCune, B., & Mefford, M. J. (1997). PC-ORD: Multivariate analysis of ecological data. Gleneden Beach, Oregon: MJM Software Design.

    Google Scholar 

  • McKean, A. P., Solomon, B. P. & Kirby, S. M. (2015). Geologic map of the Goshen quadrangle, Utah and Juab counties, Utah. Utah geologic survey map 272DM.

  • Meng, X., Dupont, R. R., Sorensen, D. L., Jacobson, A. R., & McLean, J. E. (2017). Mineralogy and geochemistry affecting arsenic solubility in sediment profiles from the shallow basin-fill aquifer of Cache Valley Basin, Utah. Applied Geochemistry, 77, 126–141.

    Article  CAS  Google Scholar 

  • Nelson, S. T., Harris, R. A., Dorais, M. J., Heizler, M., Constenius, K. N., & barnett, D. E. (2002). Basement complexes in the Wasatch fault, Utah, provide new limits on crustal accretion. Geology, 30, 831–834.

    Article  CAS  Google Scholar 

  • Nicolli, H. B., Bundschuh, J., García, J. W., Falcón, C. M., & Jean, J.-S. (2010). Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates—Evidence from the Chaco–Pampean plain (Argentina). Water Research, 44, 5589–5604.

    Article  CAS  Google Scholar 

  • Nolan, B. T., Ruddy, B. C., Hitt, K. J., & Helsel, D. R. (1998). A national look at nitrate contaminantion of ground water. Water Conditiong and Purification, 39, 76–79.

    Google Scholar 

  • Nordstrom, D. K. (2002). Worldwide occurrences of arsenic in ground water. Science, 296, 2143–2145.

    Article  CAS  Google Scholar 

  • Pampeyan, E. H.: 1989). Geologic map of the Lynndyl 30- by 60-minute quadrangle, west-Central Utah. US Geological Survey Map, I-1830.

  • Piqué, À., Grandia, F., & Canals, À. (2010). Processes releasing arsenic to groundwater in the Caldes de Malavella geothermal area, NE Spain. Water Research, 44, 5618–5630.

    Article  CAS  Google Scholar 

  • Plummer, N. L., & Sprinkle, C. L. (2001). Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA. Hydrogeology Journal, 9, 127–150.

    Article  CAS  Google Scholar 

  • Power, J. F., & Schepers, J. S. (1989). Nitrate contamination of groundwater in North America. Agriculture, Ecosystems & Environment, 26, 165–187.

    Article  CAS  Google Scholar 

  • PSOMAS & SWCA (2007). Utah Lake TMDL: Pollutant loading assessment & designated beneficial use impairment assessment. Submitted to the State of Utah Division of Water Quality, Salt Lake City, Utah, USA.

  • Rosenstock, T., Liptzin, D., Dzurella, K., Fryjoff-Hung, A., Hollander, A., Jensen, V., King, A., Kourakos, G., McNally, A., Pettygrove, G., Quinn, J., Viers, J., Tomich, T. & Harter, T.: 2014, 'Agriculture’s contribution to nitrate contamination of Californian groundwater', D - 0330666, 895–907.

  • Ryker, S. J. (2003). Arsenic in ground water used for drinking water in the United States. In A. H. Welch & K. G. Stollenwerk (Eds.), Arsenic in ground water: Geochemistry and Occurrence (pp. 165–178). Boston, MA: Springer US.

    Chapter  Google Scholar 

  • Schreiber, M. E., Gotkowitz, M. B., Simo, J. A., & Freiberg, P. G. (2003). Mechanisms of arsenic release to ground water from naturally occurring sources, eastern Wisconsin. In A. H. Welch & K. G. Stollenwerk (Eds.), Arsenic in ground water: Geochemistry and Occurrence (pp. 259–280). Boston: MA, Springer US.

    Chapter  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Vinson, D. S., McIntosh, J. C., Dwyer, G. S., & Vengosh, A. (2011). Arsenic and other oxyanion-forming trace elements in an alluvial basin aquifer: Evaluating sources and mobilization by isotopic tracers (Sr, B, S, O, H, Ra). Applied Geochemistry, 26, 1364–1376.

    Article  CAS  Google Scholar 

  • Waite, K. A., Keith, J. D., Christiansen, E. H., Whitney, J. A., Hattori, K., Tingey, D. G., & Hook, C. J. (1997). Petrogenesis of the volcanic and intrusive rocks associated with the Bingham Canyon porphyry Cu-Au-Mo deposit, Utah. In D. A. John & G. H. Ballantyne (Eds.), Geology and ore deposits of the Oquirrh and Wasatch Mountains. Society of Economic Geologists: Utah.

  • Webster, J. G. & Nordstrom, D. K. (2003). Gothermal arsenic: The source, transport and fate of arsenic in geothermal systems', arsenic in ground water, edited by a.H. Welch and K.G. Stollenwerk.

  • Welch, A. H., Westjohn, D. B., Helsel, D. R., & Wanty, R. B. (2000). Arsenic in ground water of the United States-- occurrence and geochemistry. Ground Water, 38, 589–604.

    Article  CAS  Google Scholar 

  • Wick, K., Heumesser, C., & Schmid, E. (2012). Groundwater nitrate contamination: Factors and indicators. Journal of Environmental Management, 111, 178–186.

    Article  CAS  Google Scholar 

  • Witkind, I. J. & Weiss, M. P. (1991). Geologic map of the Nephi 30' X 60' quadrangle, carbon, Emery, Juab, Sanpete, Utah and Wasatch counties, Utah, US Geological Survey Map, I-1937.

  • Wooden, J. L., Kistler, R. W. & Tosdal, R. M. (1999). Strontium, lead, and oxygen isotopic data for granitoid and volcanic rocks from the northern Great Basin and sierra Nevada, California, Nevada and Utah, Open-File Report.

  • Xie, X., Ellis, A., Wang, Y., Xie, Z., Duan, M., & Su, C. (2009). Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Science of the Total Environment, 407, 3823–3835.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by a grant from the Utah Geological Survey. We thank private landowners who graciously provided sampling access to their wells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory T. Carling.

Electronic Supplementary Material

ESM 1

(DOCX 1001 kb)

ESM 2

(XLSX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selck, B.J., Carling, G.T., Kirby, S.M. et al. Investigating Anthropogenic and Geogenic Sources of Groundwater Contamination in a Semi-Arid Alluvial Basin, Goshen Valley, UT, USA. Water Air Soil Pollut 229, 186 (2018). https://doi.org/10.1007/s11270-018-3839-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3839-5

Keywords

Navigation