Skip to main content

Advertisement

Log in

Erythromycin Exposure Disrupts the Life Cycle Stages of Aedes aegypti L. (Diptera: Culicidae)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Erythromycin is one of the most widely used antibiotics globally and is considered an emerging contaminant in wastewaters and environmental waters. The egg, larval, and pupal stages of the dengue vector Aedes aegypti L. reside and develop in aquatic environments. These mosquito stages may be exposed to compounds in the water, such as erythromycin. Aquatic stages of Ae. aegypti were reared in different concentrations of erythromycin which resulted in significant delay and decrease in eclosion of eggs and pupation of larvae (P < 0.05). Moreover, emergence of adults from pupae, larval survival, and adult female fecundity significantly decreased (P < 0.05). A few occurrences of hypopigmentation in larvae and blisters in adult mosquitoes were also observed. Interestingly, second-generation eggs, which were laid by adult female mosquitoes exposed to erythromycin during their aquatic stages, did not exhibit decreased levels of eclosion in the presence of erythromycin. These results reveal that long-term erythromycin exposure disrupts the Ae. aegypti life cycle by decreasing survival and delaying progression throughout different life stages. However, this study demonstrates that Ae. aegypti can rapidly acquire significant tolerance to the emerging environmental contaminant erythromycin within two generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Asano, T. (2013). Enzymes for melanin synthesis in insect cuticle. Hikaku seiri seikagaku (Comparative Physiology and Biochemistry). https://doi.org/10.3330/hikakuseiriseika.30.106.

  • Attardo, G. M., Hansen, I. A., & Raikhel, A. S. (2005). Nutritional regulation of vitellogenesis in mosquitoes: implications for anautogeny. Insect Biochemistry and Molecular Biology, 35, 661–675.

    Article  CAS  Google Scholar 

  • Banerjee, S., Mohan, S., Saha, N., Mohanty, S. P., Goutam, K., & Saha, G. A. (2015). Pupal productivity & nutrient reserves of Aedes mosquitoes breeding in sewage drains and other habitats of Kolkata, India: implications for habitat expansion & vector management. The Indian Journal of Medical Research, 142(Suppl 1), S87–S94.

    Google Scholar 

  • Barrera, R., Amador, M., Diaz, A., Smith, J., Munoz-Jordan, J. L., & Rosario, Y. (2008). Unusual productivity of Aedes aegypti in septic tanks and its implications for dengue control. Medical and Veterinary Entomology, 22(1), 62–69. https://doi.org/10.1111/j.1365-2915.2008.00720.x.

    Article  CAS  Google Scholar 

  • Boxall, A.B.A. (2012). New and emerging water pollutants arising from agriculture. Resource document. Organisation for Economic Cooperation and Development. https://www.oecd.org/tad/sustainable-agriculture/49848768.pdf. Accessed 21 March 2017.

  • Boxall, A. B. A., Fogg, L. A., Kay, P., Blackwell, P. A., Pemberton, E. J., & Croxford, A. (2003). Veterinary medicines in the environment. Reviews of Environmental Contamination and Toxicology, 180, 1–91.

    Google Scholar 

  • Centers for Disease Control and Prevention. (2016). Mosquito life cycle. Accessed at https://www.cdc.gov/zika/pdfs/mosquitolifecycle.pdf.

  • Chouaia, B., Rossi, P., Epis, S., Mosca, M., Ricci, I., Damiani, C., Ulissi, U., Crotti, E., Daffonchio, D., Bandi, C., & Favia, G. (2012). Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiology, 12, S2.

    Article  CAS  Google Scholar 

  • Chouin-Carneiro, T., Vega-Rua, A., Vazeille, M., Yebakima, A., Girod, R., Goindin, D., Dupont-Rouzeyrol, M., Lourenço-de-Oliveira, R., & Failloux, A. B. (2016). Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. PLoS Neglected Tropical Diseases. https://doi.org/10.1371/journal.pntd.0004543.

  • Coon, K. L., Vogel, K. J., Brown, M. R., & Strand, M. R. (2014). Mosquitoes rely on their gut microbiota for development. Molecular Ecology. https://doi.org/10.1111/mec.12771.

  • Coon, K. L., Brown, M. R., & Strand, M. R. (2016a). Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Molecular Ecology. https://doi.org/10.1111/mec.13877.

  • Coon, K. L., Brown, M. R., & Strand, M. R. (2016b). Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae). Parasites & Vectors. https://doi.org/10.1186/s13071-016-1660-9.

  • Couret, J., Dotson, E., & Benedict, M. Q. (2014). Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS One, 9(2), e87468. https://doi.org/10.1371/journal.pone.0087468.

    Article  CAS  Google Scholar 

  • Dada, N., Jumas-Bilak, E., Manguin, S., Seidu, R., Stenström, T. A., & Overgaard, H. J. (2014). Comparative assessment of the bacterial communities associated with Aedes aegypti larvae and water from domestic water storage containers. Parasites & Vectors. https://doi.org/10.1186/1756-3305-7-391.

  • Danks, H. D. (2000). Measuring and reporting life-cycle duration in insects and arachnids. European Journal of Entomology, 97, 285–303.

    Article  Google Scholar 

  • David, J. P., Coissac, E., Melodelima, C., Poupardin, R., Riaz, M. A., Chandor-Proust, A., & Reynaud, S. (2010). Transcriptome response to pollutants and insecticides in the dengue vector Aedes aegypti using next-generation sequencing technology. BMC Genomics, 11, 216.

    Article  CAS  Google Scholar 

  • David, M. R., dos Santos, L. M. B., Vicente, A. C. P., & Maciel-de-Freitas, R. (2016). Effects of environment, dietary regime and ageing on the dengue vector microbiota: Evidence of a core microbiota throughout Aedes aegypti lifespan. Memórias do Instituto Oswaldo Cruz, 111(9), 577–587.

    Article  Google Scholar 

  • Dinh, Q. T., Alliot, F., Moreau-Guigon, E., Eurin, J., Chevreuil, M., & Labadie, P. (2011). Measurement of trace levels of antibiotics in river water using on-line enrichment and triple-quadrupole LC-MS/MS. Talanta, 85(3), 1238–1245.

    Article  CAS  Google Scholar 

  • El-Nahhal, Y., & El-Dahdouh, N. (2015). Toxicity of amoxicillin and erythromycin to fish and mosquitoes. Ecotoxicology and Environmental Contamination, 10(1), 13–21.

    Article  Google Scholar 

  • Ferdig, M. T., Taft, A. S., Smartt, C. T., Lowenberger, C. A., Li, J., Zhang, J., & Christensen, B. M. (2000). Aedes aegypti dopa decarboxylase: gene structure and regulation. Insect Molecular Biology, 9(3), 231–239.

    Article  CAS  Google Scholar 

  • Finland, M., Garner, C., Wilcox, C., & Sabath, L. D. (1976). Susceptibility of “Enterobacteria” to penicillins, cephalosporins, lincomycins, erythromycin, and rifampin. Journal of Infectious Diseases, 134(Suppl), S75–S96.

    Article  Google Scholar 

  • Gaio Ade, O., Gusmão, D. S., Santos, A. V., Berbert-Molina, M. A., Pimenta, P. F., & Lemos, F. J. (2011). Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (Diptera: Culicidae) (L.). Parasites & Vectors. https://doi.org/10.1186/1756-3305-4-105.

  • Gillett, J. D., Roman, E. A., & Phillips, V. (1977). Erratic hatching in Aedes eggs: a new interpretation. Proceedings of the Royal Society of London B, 196, 223–232.

    Article  CAS  Google Scholar 

  • Gozlan, I., Koren, I., & Avisar, D. (2016). Identification, mechanisms and kinetics of macrolide degradation product formation under controlled environmental conditions. Journal of Environmental Analytical Chemistry, 3, 171. https://doi.org/10.4172/2380-2391.1000171.

    Article  Google Scholar 

  • Haight, T., & Finland, M. (1952). Observations on mode of action of erythromycin. Experimental Biology and Medicine, 81(1), 188–193.

    Article  CAS  Google Scholar 

  • Hopkins, T. L., & Kramer, K. J. (1992). Insect cuticle sclerotization. Annual Review of Entomology, 37, 273–302.

    Article  CAS  Google Scholar 

  • Imam, H., Zarnigar, Sofi, G., & Seikh, A. (2014). The basic rules and methods of mosquito rearing (Aedes aegypti). Tropical Parasitology, 4(1), 53–55. https://doi.org/10.4103/2229-5070.129167.

    Article  Google Scholar 

  • Jessick, A. M., Moorman, T. B., & Coats, J. R. (2013). Fate of erythromycin in sediment-containing surface water microcosms: how does aged erythromycin in sediment influence bioavailability? In G. Cobb et al. (Eds.), Evaluating veterinary pharmaceutical behavior in the environment, ACS symposium series. Washington, DC: American Chemical Society.

    Google Scholar 

  • Jiang, J. J., Lee, C. L., Fang, M. D., Tu, B. W., & Liang, Y. J. (2015). Impacts of emerging contaminants on surrounding aquatic environment from a youth festival. Environmental Science and Technology, 49(2), 792–799.

    Article  CAS  Google Scholar 

  • Johnson, A. C., Keller, V., Dumont, E., & Sumpter, J. P. (2015). Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers. Science of the Total Environment, 511, 747–755.

    Article  CAS  Google Scholar 

  • Kaipainen, W. J., & Faine, S. (1954). Toxicity of erythromycin. Nature. https://doi.org/10.1038/174969b0.

  • Kaplan, S. (2013). Review: pharmacological pollution in water. Critical Reviews in Environmental Science and Technology, 43(10), 1074–1116.

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2009). The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Research, 43(2), 363–380.

    Article  CAS  Google Scholar 

  • Kirst, H. A. (2010). The spinosyn family of insecticides: realizing the potential of natural products research. Journal of Antibiotics (Tokyo), 63(3), 101–111.

    Article  CAS  Google Scholar 

  • Margam, V. M., Gelman, D. B., & Palli, S. R. (2006). Ecdysteroid titers and developmental expression of ecdysteroid-regulated genes during metamorphosis of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). Journal of Insect Physiology, 52(6), 558–568.

    Article  CAS  Google Scholar 

  • Mazzei, T., Mini, E., Novelli, A., & Periti, P. (1993). Chemistry and mode of action of macrolides. The Journal of Antimicrobrial Chemotherapy, 31(Suppl C), 1–9.

    Article  CAS  Google Scholar 

  • McArdell, C. S., Molnar, E., Suter, M. J., & Giger, W. (2003). Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley watershed, Switzerland. Environmental Science and Technology, 37(24), 5479–5486.

    Article  CAS  Google Scholar 

  • Merritt, R. W., Dadd, R. H., & Walker, E. D. (1992). Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annual Review of Entomology, 37, 349–376.

    Article  CAS  Google Scholar 

  • Minard, G., Mavingui, P., & Moro, C. V. (2013). Diversity and function of bacterial microbiota in the mosquito holobiont. Parasites & Vectors. https://doi.org/10.1186/1756-3305-6-146.

  • Minh, T. B., Leung, H. W., Loi, I. H., Chan, W. H., So, M. K., Mao, J. Q., Choi, D., Lam, J. C., Zheng, G., Martin, M., Lee, J. H., Lam, P. K., & Richardson, B. J. (2009). Antibiotics in the Hong Kong metropolitan area: ubiquitous distribution and fate in Victoria Harbour. Marine Pollution Bulletin, 58(7), 1052–1062.

    Article  CAS  Google Scholar 

  • Nasir, S., Jabeen, F., Abbas, S., Nasir, I., & Debboun, M. (2017). Effect of climatic conditions and water bodies on population dynamics of the dengue vector, Aedes aegypti (Diptera: Culicidae). Journal of Arthropod-Borne Diseases, 11(1), 50–59.

    Google Scholar 

  • Nie, X. P., Liu, B. Y., Yu, H. J., Liu, W. Q., & Yang, Y. F. (2013). Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata. Environmental Pollution, 172, 23–32.

    Article  CAS  Google Scholar 

  • Ocampo, P. S., Lázár, V., Papp, B., Arnoldini, M., Abel zur Wiesch, P., Busa-Fekete, R., Fekete, G., Pál, C., Ackermann, M., & Bonhoeffer, S. (2014). Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrobial Agents and Chemotherapy, 58(8), 4573–4582.

    Article  CAS  Google Scholar 

  • Panditi, V. R., Batchu, S. R., & Gardinali, P. R. (2013). Online solid-phase extraction–liquid chromatography–electrospray–tandem mass spectrometry determination of multiple classes of antibiotics in environmental and treated waters. Analytical and Bioanalytical Chemistry. https://doi.org/10.1007/s00216-013-6863-8.

  • Pankey, G. A., & Sabath, L. D. (2004). Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of gram-positive bacterial infections. Clinical Infectious Diseases, 38(6), 864–870.

    Article  CAS  Google Scholar 

  • Pennington, M. J., Rivas, N. G., Prager, S. M., Walton, W. E., & Trumble, J. T. (2015). Pharmaceuticals and personal care products alter the holobiome and development of a medically important mosquito. Environmental Pollution, 203, 199–207.

    Article  CAS  Google Scholar 

  • Ponnusamy, L., Böröczky, K., Wesson, D. M., Schal, C., & Apperson, C. S. (2011). Bacteria stimulate hatching of yellow fever mosquito eggs. PLoS One, 6(9), e24409.

    Article  CAS  Google Scholar 

  • Poupardin, R., Reynaud, S., Strode, C., Ranson, H., Vontas, J., & David, J. P. (2008). Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides. Insect Biochemistry and Molecular Biology, 38(5), 540–551.

    Article  CAS  Google Scholar 

  • Price, D. P., Schilkey, F. D., Ulanov, A., & Hansen, I. A. (2015). Small mosquitoes, large implications: crowding and starvation affects gene expression and nutrient accumulation in Aedes aegypti. Parasites & Vectors. https://doi.org/10.1186/s13071-015-0863-9.

  • Ramasamy, R., Surendran, S. N., Jude, P. J., Dharshini, S., & Vinobaba, M. (2011). Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases. PLoS Neglected Tropical Diseases, 5(11), e1369. https://doi.org/10.1371/journal.pntd.0001369.

    Article  Google Scholar 

  • Riaz, M. A., Poupardin, R., Reynaud, S., Strode, C., Ranson, H., & David, J. P. (2009). Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics. Aquatic Toxicology, 93(1), 61–69.

    Article  CAS  Google Scholar 

  • Rodrigues, S., Antunes, S. C., Correia, A. T., & Nunes, B. (2016). Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss. Science of the Total Environment, 545(546), 591–600.

    Article  CAS  Google Scholar 

  • Sauvé, S., & Desrosiers, M. (2014). A review of what is an emerging contaminant. Chemistry Central Journal, 8, 15.

    Article  CAS  Google Scholar 

  • Schlaeger, D. A., Fuchs, M. S., & Kang, S. H. (1974). Ecdysone-mediated stimulation of dopa-decarboxylase activity and its relationship to ovarian development in Aedes aegypti. Journal of Cell Biology, 61(2), 454–465.

    Article  CAS  Google Scholar 

  • Serisier, D. J., Martin, M. L., McGuckin, M. A., Lourie, R., Chen, A. C., Brain, B., Biga, S., Schlebusch, S., Dash, P., & Bowler, S. D. (2013). Effect of long-term, low-dose erythromycin on pulmonary exacerbations among patients with non-cystic fibrosis bronchiectasis: the BLESS randomized controlled trial. JAMA, 309(12), 1260–1267.

    Article  CAS  Google Scholar 

  • Soares, M. P., Silva-Torres, F. A., Elias-Neto, M., Nunes, F. M., Simões, Z. L., & Bitondi, M. M. (2011). Ecdysteroid-dependent expression of the tweedle and peroxidase genes during adult cuticle formation in the honey bee, Apis mellifera. PLoS One. https://doi.org/10.1371/journal.pone.0020513.

  • Stackelberg, P. E., Furlong, E. T., Meyer, M. T., Zaugg, S. D., Henderson, A. K., & Reissman, D. B. (2004). Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Science of the Total Environment, 329(1–3), 99–113.

    Article  CAS  Google Scholar 

  • Telang, A., Li, Y., Noriega, F. G., & Brown, M. R. (2006). Effects of larval nutrition on the endocrinology of mosquito egg development. Journal of Experimental Biology, 209(Pt 4), 645–655.

    Article  Google Scholar 

  • Telang, A., Frame, L., & Brown, M. R. (2007). Larval feeding duration affects ecdysteroid levels and nutritional reserves regulating pupal commitment in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Journal of Experimental Biology, 210(Pt 5), 854–864.

    Article  Google Scholar 

  • Tolls, J. (2001). Sorption of veterinary pharmaceuticals in soils: a review. Environmental Science & Technology, 37, 3397–3406.

    Article  CAS  Google Scholar 

  • Tun-Lin, W., Burkot, T. R., & Kay, B. H. (2000). Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in North Queensland, Australia. Medical and Veterinary Entomology, 14(1), 31–37.

    Article  CAS  Google Scholar 

  • Unger, L., & Kisch, A. (1958). Observations on bacteriostatic and bactericidal action of erythromycin. Experimental Biology and Medicine, 98(1), 176–178.

    Article  CAS  Google Scholar 

  • Van Boeckel, T. P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B. T., Levin, S. A., & Laxminarayan, R. (2014). Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases, 14(8), 742–750.

    Article  Google Scholar 

  • Viluksela, M., Hanhijärvi, H., Husband, R. F., Kosma, V. M., Collan, Y., & Männistö, P. T. (1988). Comparative liver toxicity of various erythromycin derivatives in animals. Journal of Antimicrobial Chemotherapy, 21(Suppl D), 9–27.

    Article  CAS  Google Scholar 

  • World Health Organization. (2009). Dengue: guidelines for diagnosis, treatment, prevention and control. Geneva: World Health Organization.

    Google Scholar 

  • Xu, W. H., Zhang, G., Zou, S. C., Li, X. D., & Liu, Y. C. (2007). Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environmental Pollution, 145(3), 672–679.

    Article  CAS  Google Scholar 

  • Yadav, K. K., Bora, A., Datta, S., Chandel, K., Gogoi, H. K., Prasad, G. B., & Veer, V. (2015). Molecular characterization of midgut microbiota of Aedes albopictus and Aedes aegypti from Arunachal Pradesh, India. Parasites & Vectors. https://doi.org/10.1186/s13071-015-1252-0.

  • Yamany, A. S., & Adham, F. K. (2014). The effect of larval and adult nutrition on survival and fecundity of dengue vector Aedes albopictus Skuse (Diptera: Culicidae). Journal of the Egyptian Society of Parasitology, 44(2), 447–454.

    Article  Google Scholar 

  • Zhang, T., & Li, B. (2011). Occurrence, transformation, and fate of antibiotics in municipal wastewater treatment plants. Critical Reviews in Environmental Science and Technology, 41(11), 951–998.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Professor Celia M. Austria for her insights on this research and for providing logistic assistance during the experimentation.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: PMM. Performed the experiments: MLC PMM. Analyzed the data: MLC PMM JLA. Wrote the paper: MLC PMM JLA.

Corresponding author

Correspondence to Paul Mark B. Medina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calma, M.L., Asis, J.L.B. & Medina, P.M.B. Erythromycin Exposure Disrupts the Life Cycle Stages of Aedes aegypti L. (Diptera: Culicidae). Water Air Soil Pollut 229, 159 (2018). https://doi.org/10.1007/s11270-018-3811-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3811-4

Keywords

Navigation